
KERN COUNTY GROUND WATER

DISTRICT REPORT

KERN COUNTY GROUND WATER MODEL ERRATA SHEET

- Page 1. Fourth paragraph, change "assimilate" to "simulate".
- Page 2. Fifth paragraph, change "tendencies" to "estimates".
- Page 5. Last paragraph, second sentence, delete "and flows" and add the following sentence: "Subsurface flow occurs between adjacent node points."
- Page 6. Fourth paragraph, last sentence, insert "use of" after "through".
- Page 7. Tenth paragraph, change heading to "Subsidence Water".
- Page 8. Third paragraph, last two sentences, change to read: "Node data are shown in Tables 33 and 34 in Appendix C. Flow path data are provided in Tables 35 through 38 in Appendix C."
- Page 10. Third paragraph, last sentence, change to read: "After additional information was collected, four more calibration runs were made over a 15-year (1958 to 1973) period."
- Page 12. In Figure 1, delete "(Simulated)" from title.
- Page 14. Sixth paragraph, first sentence, change "interesting" to "intersecting".
- Page 21. First paragraph, fourth and fifth lines, change to: "Meridian, 18 kilometres -- about 11 miles -- below the Kern Canyon powerhouse)"

 Second paragraph, change "County" to "River". Last paragraph should read: "During a 76-year period from 1894 through 1970 ... 860 hm³ (696,800 acre-feet)"
- Page 23. Add the following sentence at end of the third paragraph: "Long-term median flow was used in simulation runs when projecting into the future."
- Page 27. Add footnote to second column to show that Alpaugh ID is located in Tulare County. Water deliveries were made via Kern County.
- Page 29. Fourth paragraph, second line, change "the" to "this".
- Page 40. Last paragraph, add the following sentence: "Recent plans call for treatment of California Aqueduct water in lieu of recharge program and well field operation."
- Page 49. In Table 15, cotton consumptive use is 2.58.
- Page 51. Change last word on page to "outflow".
- Page 87. In Table 22, add "median flow, 1894-1959 = 567,000".
- Page 100. Add footnote to state that figures for years 1990 and 2020 were estimated.
 - Plate 4. 2nd point is located in the NET of Section 24, T30S/R25E, MDB & M.

FOREWORD

This report describes a study undertaken jointly by the Department of Water Resources and the Kern County Water Agency to improve knowledge of the nature of the ground water basin underlying the San Joaquin Valley portion of Kern County so that its use, in conjunction with imported water, can be planned more wisely.

This ground water basin is a subsurface reservoir that, based on a 60-metre (200-foot) drawdown of water levels in its unconfined aquifer, contains as much as 40 cubic kilometres (32 million acre-feet) of usable water. This priceless resource is essential to the operation of the Valley's agricultural industry.

This cooperative effort resulted in a computer simulation of the ground water basin (i.e., a mathematical model that predicts the effects of different ground water pumping and recharge conditions, and of water import and use).

Creation of the model involved assemblage of a large, detailed data base, which improved knowledge of the basin's hydrology and geology and ultimately led to recognition of a number of potential problems and solutions.

Though not designed to deal directly with water quality problems, the model does indicate anomalous areas, and could be refined to better address this crucial aspect of basin management.

In addition to its broad, basinwide application, the model can assist water districts within the basin in their planning of import, recharge, and pumping activities. It is currently employed by the Kern County Water Agency to determine how imports from the California Aqueduct benefit Kern County's ground water basin. It will be useful to the Department of Water Resources in developing ground water storage projects for the State Water Project in Kern County.

Carl L. Stetson, Chief San Joaquin District

CONVERSION FACTORS

English to Metric System of Measurement

Quantity	English unit	Multiply by	To get metric equivalent
Length	inches (in)	25.4	millimetres (mm)
		.0254	metres (m)
	feet (ft)	.3048	metres (m)
	miles (mi)	1.6093	kilometres (km)
Area	square inches (in ²)	6.4516 × 10 ⁻⁴	square metres (m ²)
	square feet (ft ²)	.092903	square metres (m ²)
	acres	4046.9	square metres (m ²)
		.40469	hectares (ha)
		.40469	square hectometres (hm²)
		.0040469	square kilometres (km²)
	square miles (mi ²)	2.590	square kilometres (km²)
Volume	gallons (gal)	3.7854	litres (I)
		.0037854	cubic metres (m ³)
	million gallons (10 ⁶ gal)	3785.4	cubic metres (m ³)
	cubic feet (ft ³)	.028317	cubic metres (m ³)
	cubic yards (yd³)	.76455	cubic metres (m ³)
	acre-feet (ac-ft)	1233.5	cubic metres (m ³)
		.0012335	cubic hectometres (hm³)
		1.233 × 10 ⁻⁶	cubic kilometres (km³)
Volume/Time			
(Flow)	cubic feet per second (ft ³ /s)	28.317	litres per second (I/s)
		.028317	cubic metres per second (m ³ /s)
	gallons per minute (gal/min)	.06309	litres per second (1/s)
		6.309×10^{-5}	cubic metres per second (m ³ /s)
	million gallons per day (mgd)	.043813	cubic metres per second (m ³ /s)
Mass	pounds (lb)	.45359	kilograms (kg)
	tons (short, 2,000 lb)	.90718	tonne (t)
		907.18	kilograms (kg)
Power	horsepower (hp)	0.7460	kilowatts (kW)
Pressure	pounds per square inch (psi)	6894.8	pascal (Pa)
Temperature	Degrees Fahrenheit (°F)	$\frac{tF-32}{1.8}=tC$	Degrees Celsius (°C)

TABLE OF CONTENTS

<u> 1</u>	Page
FOREWORD	iii
ORGANIZATION	xiii
CHAPTER I. INTRODUCTION AND RECOMMENDATIONS	1
Recommendations	2
CHAPTER II. GROUND WATER MODEL FORMULATION	5
Nodal Areas	5
Variable Input Data	6
Irrigated Agricultural Lands	6
Consumptive Use by Agriculture	6666777777777777
Applied Water by Source	6
Recharge by Source	6
Conveyance Loss to Deep Percolation by Source	6
Evaporation by Source	7
Exports by Source	7
Total Surface Inflow by Source	7
Unit Effective Precipitation	7
Recreational Irrigated Land	7
Population	7
Percentage of Municipal Extractions	7
Tmnorts	ή
Imports	ή
Subsurface Inflow	Ż
Subsurface Inflow	Ż
Dummy Node Heads	8
Fixed Factors	8
Nodal Area Geometry	2
Transmissivity	8 8
Specific Yield	8
Storage Coefficient	8
Percentage of Node Underlain by	Ŭ
Moisture-deficient Soil	8
Volume of Water Required to Satisfy	
Moisture Deficiency	8
Percentage of Node Underlain by	
Perched Water Table	8
Unit Demand	9
Percentage Pumped from Lower Layer	999
Percentage Export Pumped in Lower Layer	9

<u>. Pa</u>	ge
Lower Layer Not Present Percentage to Deep Percolation Consumptive Use Percentage Percentage to Sewerage Percentage of Waste Water Applied Irrigation Efficiency Historical Heads	9999999
Items Projected as Fixed Quantities	9
Calibration Process	10
Classes of Water Levels in Model	10 11 11 11
Measurements from Selected Observation Wells	13 13 14 15
Model Operation	15
Surface Water Supply Projections	16 16 16 16
	17 17
Evaluation of Model	18
CHAPTER III. HYDROLOGIC FACTORS IN MODEL CALIBRATION	19
Selection of Hydrologic Base Period	19
Precipitation	19 20 20
Surface Water Inflow	21
Kern River Inflow	21
Poso Creek San Emigdio Creek Caliente Creek Tehachapi Creek Pastoria Creek	23 23 24 24 24 24

	<u>P</u>	age
	Imported Water	25 25 26
Surfa	ce Water Outflow	29
	Kern River Outflow	29 30
Strea	nflow Diversions	3C
	Kern River Diversions	30 31 31
Deter	mination of Seasonal and Effective Precipitation	31
	Weighted Average Precipitation	32 32 33 3
Waste	Water	34
	Municipal Waste Water	34 35 37
Artif	icial Recharge of Fresh Water	37
	Kern County Land Company (Tenneco West) Rosedale-Rio Bravo Water Storage District Arvin-Edison Water Storage District West Kern County Water District Recharge from Over-irrigation	37 37 38 40 41
Popul	ation of Model Area	42
	Assignment of Population to Nodes	42
Land	Use in Model Area	42 44 44
Irrie	ation Efficiency	47
Const	nptive Use of Water	48
	Wegetative Consumptive Use	48 50

																											Page
	d Wa Alpa West Lost	augl	h : eri	Iri	ri Con	ga un	tio ty	on W	D at	is er	tr D	ic is	t tr:	ic	• t											•	5. 5. 5. 5.
	Beli	ride	ge	0:	iľ	Co	omj	pai	nу	• Pai	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	52
Hydro	logi	ic :	Ba:	Lar	10	Э	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	53
CHAPT	ER I	CV.		GE(ANI															ER •	S!	roi •	RA(GE •	•	•	•	57
Clay	Laye	ers	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	57
Verti	cal	Geo	olo	ogi	Lc	Ba	arı	ci	er	S	•		•	•	•	•	•	•	•				•	•	•	•	58
	Faul Fold Angu Rock	ls ılaı	r T	Jno	cor	ıfo	•	i	ti	• es	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	58 59 60 60
Trans	miss	sivi	ity	T	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	63
Condu	ctiv	rity	y	•	•	•	•	•	•	•		•	•	•		-	•		•	•	•	•	•	•	•	•	63
	Inte Grou																		•								64 64
Speci	fic	Yie	eld	1		•		•		•	•	•			•	•	•	•	•	•	•	•	•	•	•	•	64
Subsi	deno	e		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	.•	•	67
Moist	ure-	-def	iic	cie	ent	, 5	oi	.18	3	•	•	•		•	•	•		•					•	•	•		73
]	Area Caus Mois Amou Wate	se c	of ce	Mc De	is efi	tı.ci	ıre .en	rc2	Def	iic Dla	ie RSS	eno si1	ey Cio	cat	ic	• n	•	•	•	•	•	•	•	•	•	•	74 74 75 76 77
In-tr	ansi Grou						_				•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	78 78
										A	PE	E	ID)	CX F	S												
Append	dix	A :	Ε	BIE	BLI	:OG	RA	PF	ΙΥ	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	79
Append	lix	B:	E	IYD	\mathbb{R}^{C})LC	GI	C	$\mathbb{D}A$	ΔTA	L	•	•	•	•	•	•	•	•		•	•	•	•	•	•	85
Annend	rif	C:	G	EC)T _i C)ር¦ፐ	-C	T) A	ላጥ ል	i																	103

viii

FIGURES

Figure Number	<u>P</u> :	age
1	Computer-printed Hydrograph for Node 104	12
2	Kern River Historic Hydrograph	22
3	Estimated and Actual California Aqueduct Deliveries to Kern County Water Agency	28
4	Kern County Population Projection	43
5	Kern County Agricultural Acreage	45
6	Consumptive Use of Water in Model Area	52
7	Cross Section Township 25 South	61
8	Cross Section Township 29 South	62
9	Water Level and Compaction Records from Recorders near Pixley	69
Table Number	TABLES	
1	Water Level Trends Between 1980 and 1990 as Represented by Nodal Area Boundaries Shown on Plate 2	3
2	Long-term and Base Period Mean Precipitation at Selected Stations	20
3	Long-term Contractors and Friant-Kern Canal Deliveries to Kern County	26
4	Short-term Contractors and Friant-Kern Canal Deliveries to Kern County	27
5	Kern River Flow at Highway 46	29
6	Effective Precipitation, Model Study Area	33
7	Municipal Waste Water Treatment Plant Input	35
8	Conveyance Loss, Deep Percolation, and Agricultural Recharge of Oil Field Wastes	36

Table Number		Page
9	Ground Water Recharge, North Kern Water Storage District	. 38
10	Ground Water Recharge, Rosedale-Rio Bravo Water Storage District	. 39
11	Ground Water Recharge, Arvin-Edison Water Storage District	. 4C
12	Deep Percolation to Ground Water	. 41
13	Ultimate Irrigable Lands, Ground Water Basin Area of Kern County	, 46
14	Assumed Irrigation Efficiencies of Various Crops	. 47
15	Agricultural Unit Consumptive Use	. 49
16	Model Area Hydrologic Balance	54
17	Storage Capacity, Unconfined Nodal Areas	. 65
18	Annual Compaction Rates at Compaction-measuring Sites, San Joaquin Valley, California	70
19	Volumes and Proportions of Subsidence Used in Kern County Ground Water Model	71
20	Subsidence and Elastic Storage Changes in 174 Confined Nodes, 1958 - 1966	72
21	Annual Water Loss to Moisture-deficient Soils	78
	Appendix B	
22	Surface Water Inflow	. 87
23	Precipitation Records for Stations in Kern County Ground Water Basin	91
24	Computed Monthly Areal Precipitation for Model Area, 1958 - 1966	93
25	Effective Precipitation Used by Crops in Model Area, 1958 - 1966	94
26	Municipal Population and Waste Water Input to Treatment Plants, 1958 - 1966	95

Table Number		Page
27	Oil Field Waste Water Supply, Conveyance Loss, and Deep Percolation	96
28	Oil Field Waste Water Supply Recharge for Agriculture	97
29	Population Distribution, Urban Bakersfield Area Census Tracts to Nodal Areas	98
30	Municipal Population Projections	99
31	Cropping Patterns of Irrigated Land, 1958 - 2020	100
32	Ground Water Extractions for Export	101
	Appendix C	
33	Selected Data from Unconfined Aquifer Nodes, Data Base for Run 'A', May 30, 1974	105
34	Selected Data from Confined Aquifer Nodes, Data Base for Run 'A', May 30, 1974	111
35	Unconfined Layer Node-to-Node Flow Path Data, Data Base for Run 'A', May 30, 1974	116
36	Confined Layer Node-to-Node Flow Path Data, Data Base for Run 'A', May 30, 1974	127
37	Interlayer Node-to-Node Flow Path Data, Data Base for Run 'A', May 30, 1974	135
38	Forebay Nodes to Confined Aquifer Nodes, Flow Path Data, Data Base for Run 'A', May 30, 1974	137
39	Specific Yield Values Used in Model Study	138
Plate Number	PLATES (Bound at back of report)	
1	Nodal Polygon Network	
2	Nodel Approximation of Water Districts	

Plate Number	
3	Major Geologic Features, Kern County
4	Streams, Conveyance Facilities, and Precipitation Stations
5	Kern County Basin Area Recharge Facilities
6	Area Underlain by Sediments, Subbasins, and Cross Sections, Kern County
7	Approximate Area of Confining Clay
8	Recommended Changes in Polygons Because of Ground Water Mounds
9	Distribution of Final Specific Yield Values in Unconfined Aquifer
10	Subsidence Contours, January 1958 to January 1973
11	Areas of Moisture-deficient Soils

State of California The Resources Agency DEPARTMENT OF WATER RESOURCES San Joaquin District

KERN COUNTY WATER AGENCY

Carl L. Stetson, District Chief

Stuart T. Pyle, Engineer-Manager1/

Richard W. Meffley, Project Manager

This report was prepared by

Arvey A. Swanson², Engineering Geologist

Michael R. Rector, Hydrologist-Geologist

Donald D. Engdahl, Research Writer

assisted by

Richard S. Brown
Neal B. Crawford
Carl J. Hauge
Thomas I. Iwamura
Helen Joyce Peters
Joseph F. Schweizer
Darrell J. Smith
Ernest M. Weber

Thomas E. Ashlock Robert J. Jelaca Robert E. Johnson

Dr. David Kleinecke, Consultant

^{1/} William C. Bryant was the Agency's Engineer-Manager during the study.

^{2/} Former program manager.

CHAPTER I. INTRODUCTION AND RECOMMENDATIONS

In 1967, the Department of Water Resources and the Kern County Water Agency (a county-wide agency serving 16 member water districts) initiated a cooperative, detailed study of the San Joaquin Valley ground water basin in Kern County.

The study had two objectives: (1) to determine the optimum method of operating the ground water basin in conjunction with existing surface water supplies and imports from the California Aqueduct and the Central Valley Project, and (2) to provide a basis for establishing "zones of benefit" resulting from importation of State water into Kern County.

The aim of the study was to develop a computerized mathematical model capable of predicting the ground water basin's behavior under a variety of circumstances. This report describes the hydrologic and geologic factors responsible for the model's formulation but makes no attempt to delve extensively into the model's history or to explain all the mathematical intricacies that contributed to its development. Instead, readers are referred to a review of the project's history (Rector, 1974) and to technical reports illuminating the mathematical hurdles (General Electric Company, 1968; Weber, 1966; Wilson, 1975).*

The Department and the Agency shared the task of creating a model designed to approximate the basin's characteristics. The model was developed in three stages: (1) all available hydrologic and geologic data were assembled and tailored so that all essential facts could be utilized; (2) calibration was undertaken to improve the model's ability to simulate historical ground water levels; and (3) hydrologic data were projected to assimilate several water supply and use conditions, enabling the model to anticipate ground water changes through 1990.

Creation of such a model required considerable geohydrologic and developmental planning, and during the calibration phase important conclusions were drawn regarding the relationship between geology and ground water movement. Some conclusions extended knowledge on existing geologic structures, while others suggested that some structures had a greater effect on ground water movement than was previously realized. During calibration, for example, it was determined that the confining clay was more extensive than previous studies had

^{*}Computer work was contracted with the General Electric Company (TEMPO) in Santa Barbara (General Electric Company, 1968).

indicated, and additional geologic structures, responsible for the obstruction of ground water flow, were discovered. In lower and single-layer aquifers, it was ascertained that ground water flow does not occur down to the base of the fresh water, as once suspected. Further, transmissivity in older formations (Kern River and Chanac, among others) was less than in younger sediments.

The calibration process also emphasized the need for additional data on the two modeled aquifers -- particularly in areas where water from both aquifers is unused or where monitoring devices are not installed. Data are also lacking in one area northeast of Poso Creek where the Santa Margarita formation is the main aquifer and another west of the modeled area between Elk Hills and Lost Hills. In addition, calibration also generated a series of recommendations designed to enhance the model's value (see pages 63 and 64).

In the use of this model, it should be noted that the accuracy of the ground water model is limited: first, by the spacing of the nodes, and also by their shape relative to the principal ground water flow paths and boundaries. The computer views the 5 000-square-kilometre (2,000-square-mile) study area in the San Joaquin Valley as a series of polygonal nodal sections, each containing about 24 km² (9 square miles) as shown on Plate 1. While, in general, node size and shape presented few problems, difficulties did arise in two areas where significant ground water flow was directed approximately diagonal to the nodal boundaries. This occurred in the alluvial fans of Kern River and Poso Creek, where flow along steep-sided ground water mounds could not be simulated accurately without requiring an up-gradient flow.

The model's hydrologic balance is affected by subsurface phenomena involving substantial quantities of water. These phenomena include yield from lowered ground water levels, subsurface boundary flow, yield due to land subsidence, and loss of water due to moisture-deficient soils.

Projected water level trends -- based on future supply and demand tendencies, as well as district plans and contracts in effect in 1973 (described in terms of a ten-year period from 1980 to 1990) -- will decline approximately 0.6 metre (2 feet). Water level projections are presented in Table 1 in terms of areas covered by organized water districts. Water districts are approximated on Plate 2 by nodal area boundaries.

Recommendations

Although the model is much more accurate than previous methods for predicting future water levels in Kern County and is probably sufficiently accurate for determining

TABLE 1

WATER LEVEL TRENDS BETWEEN 1980 AND 1990
AS REPRESENTED BY NODAL AREA BOUNDARIES
SHOWN ON PLATE 2

(in feet)

Location	Confined	Unconfined
Wheeler Ridge-Maricopa	+9 to +12	+14 to +45
Arvin-Edison and Wheeler Ridge-Maricopa	+7 to +11	-2 to +40
Greater Bakersfield	+4 to +22	-19 to +28
South Buena Vista	+5 to +7	At ground surface by 1980
Arvin-Edison	+5 to +7	-4 to +20
Cawelo		-13 to -37*
Rosedale-Rio Bravo	+1 to -16	-8 to -22
Shafter-Wasco	-12 to -18	-14 to - 23
North North Kern	0 to -18	-7 to -20
Semitropic	-7 to -14	+9 to -16
Southern San Joaquin	-10 to -12	+1 to -17
Pond Poso	-5 to -11	+21 to -9
Lost Hills	-9 to -18	+7 to -12
Buttonwillow	-4 to -12	+14 to -14
North Buena Vista	-2 to -9	+12 to -12
Kern Delta	+1 to +6`^	+14 to -10
Rag Gulch		-25*
Kern-Tulare		-47 to -56*
Delano-Earlimart	-14	+1 to -18
South North Kern	+3 to -7	+3 to -10

^{*}Much of the water is produced from the Santa Margarita formation which is confined, but the nodes were treated as unconfined in the model.

the most efficient manner to operate the basin, parts of the model and its data base may require additions or improvements. To help water planners anticipate the effects of different options, the model's data base must be kept current.

In line with the above observation, it is recommended that:

- l. The model's data base be kept up to date by continuous monitoring of hydrologic information, including major surface water supplies, irrigated acreage, per capita water use, population projections, and irrigation efficiencies.
- 2. Data be collected for a study of the north-east portion of the model to determine the rate of recharge to the Santa Margarita formation, the effects of the Hodgeman Ranch and Premier faults (shown on Plate 3), and water movement in the Santa Margarita formation.
- 3. Observation wells be constructed west of the California Aqueduct to determine boundary ground water conditions and water quality. Moisture deficiency information could be obtained from soil samples gathered when the wells are drilled.
- 4. Drillers' logs filed since completion of this study be researched for wells completed in only one aquifer, since data from wells completed in more than one aquifer cannot be used to calibrate the model.
- 5. When additional observation wells above the "A" clay are available, a third aquifer should be monitored north of Spicer City and beneath the Buena Vista and Kern lakebeds.
- 6. As data become available on water levels outside the modeled area, "dummy" nodes should be utilized so that the model will compute the subsurface inflow around its own periphery.
- 7. For as long as subsidence persists, subsidence areas should be resurveyed at five-year intervals.
- 8. Future subsidence rates should be related to water level trends in the model.

CHAPTER II. GROUND WATER MODEL FORMULATION

The simulation model of the Kern County ground water basin was formed by first dividing the 5 000-km² (2,000-square-mile) study area into polygons containing about 23 km² (9 square miles) each, as shown on Plate 1.

The model, which treats each polygon as a single point or node, was then given a description of the geologic conditions governing subsurface water flow and storage — flow between layers, subsurface flow between nodes, and aquifer void space for water storage.

Another set of data described water levels in, and water flow to and from, the surfaces of the nodes -- items such as imported water, rainfall, natural streamflow, evaporation, plant use, and deliberate ground water recharge.

As an ideal, the model would have complete and accurate information on every aspect of water supply, storage, use, and flow in the basin. As a practical matter, however, that information is limited — in some cases severely — and as a result, the model's answers are limited in accuracy by the degree of uncertainty in the information which is given.

The complex task of the digital computer is similar to that of the accountant: it must work with the intricately interrelated items of water supply and demand, within the framework of the basin's hydrology and geology, to arrive at an adjusted balance. The computer's answer is a description of the changes in the ground water levels in each nodal area for a given set of water supply and use conditions.

Nodal Areas

As illustrated on Plate 1, the basic nodal shape is rectangular, although in the southeast portion some of the polygons were designed with irregular shapes so that boundaries coincided with fault zones known to influence ground water flow. (After completion of the model, other flow restrictions were recognized, suggesting that further changes in some polygonal shapes might improve the model.)

The dots that appear in the centers of the nodal areas are the mathematical node points used in the model. For calculative purposes, all changes and flows were assumed to take place at the nodes, and the effects spread uniformly over the nodal areas.

Because a subsurface clay layer separates two water-bearing layers in part of the basin, the model was designed with nodes blanketing the entire surface to deal with the unconfined (upper) aquifer and others for the confined aquifer below the clay layer. That resulted in 217 nodes with descriptions of the unconfined aquifer and 174 nodes for the confined aquifer.

On the north, where water-bearing sediments extend into Kings and Tulare Counties, 28 "dummy" nodes (nodes with predetermined water levels, as opposed to computed water levels in regular model nodes) are used to establish subsurface flow conditions. For nodes at the south, east, and west boundaries, annual estimates of subsurface flows from outside the model area were added to the water accounting.

Variable Input Data

Each node on the model was assigned variable hydrologic input data to cover 18 categories. These items vary with time and usually have different values for each year modeled.

Irrigated Agricultural Lands. This information is obtained from periodic land use surveys. Detailed land use surveys conducted in 1958 and 1969 determined the crop pattern in agricultural areas, and a 1966 survey ascertained only the changes in acreage irrigated. The annual incremental change in irrigated area between years of survey is assumed to be linear. Annual updating is scheduled to be accomplished through remote imagery.

Consumptive Use by Agriculture. Unit consumptive use was estimated for each major crop grown in Kern County. Each nodal area has an average consumptive use, determined from unit use weighted by the acreage of each crop grown in the nodal area.

Applied Water by Source. The sources of applied water are a variety of surface water supplies imported to the nodal areas. Ground water, when needed to meet the total demand, is automatically extracted during the simulation process, according to a formula that includes an irrigation efficiency factor.

Recharge by Source. Cases of deliberate and incidental recharge to the ground water basin are included in this category.

Conveyance Loss to Deep Percolation by Source. Percolation losses from irrigation canals are included in this category.

Evaporation by Source. This item lists evaporation from all free water surfaces, including a percentage of annual flow in canals, rivers, and recharge basins. It does not include evapotranspiration from irrigated fields.

Exports by Source. This category applies only to water exported from the model area.

Total Surface Inflow by Source. Total surface water supplies to the model area, as determined from historical records, are tabulated and compared with the sums of individual portions supplied to each node. This comparison serves as a check to assure accounting for all surface inflow.

Unit Effective Precipitation. This item is defined as direct rainfall intercepted by crops during the growing season that did not exceed the crops' consumptive use requirement. The weighted average factor is related to both crop type and growing season. It varies annually but is consistent for all nodes. An average unit factor is used in projection runs.

Recreational Irrigated Land. This factor deals with nodes where land is irrigated to maintain wildfowl habitats.

Unit Recreational Consumptive Use. This factor concerns the per acre amount of water used to maintain wildfowl habitats.

Population. This item concerns urban population in each node. It is determined from U. S. Census figures and from predictions supplied by the Kern County Planning Commission and the State of California.

Percentage of Municipal Extractions. This item allows for allocation of ground water extractions to more than one node. Distribution is based on a percentage of total municipal extractions.

Imports. This item represents the volume of water imported to the model area for municipal and industrial use. Imports reduce ground water extractions by supplying a portion of the total demand.

Subsidence. This item represents water released from storage by subsidence.

Subsurface Inflow. This item is the amount of ground water flow that crosses beneath the surface of the model area's external boundary.

Oil Field Waste Recharge. Percolating oil field waste waters constitute a small portion of the model area's annual ground water recharge. It was assumed that about half the oil field waste water from sumps percolates, while the other half evaporates.

<u>Dummy Node Heads</u>. This item establishes the hydraulic heads in dummy nodes used to define boundary conditions on the north edge of the model.

Fixed Factors

In addition to the variable factors outlined above, the model was given information on a series of fixed factors describing the characteristics of the ground water basin. Although some of these items were changed between runs to improve calibration, they remained fixed throughout the time period simulated in any one computer run.

Nodal Area Geometry. This description concerns the lengths and widths of the flow paths between the nodes as well as the elevations of the tops and bottoms of the flow paths and the area and elevations of the tops and bottoms of the nodes. Node data are shown in Tables 31 and 32 in Appendix B. Flow path data are provided in Tables 33 through 36 in Appendix C.

Transmissivity. This factor expresses the water's rate of flow through a unit width of the aquifer under a unit hydraulic gradient. It describes the characteristics of the aquifer between nodes.

Specific Yield. This factor is defined as the percentage of soil volume that will store and yield water by gravity. The specific yield item is for confined and unconfined aquifers but applies to the confined aquifer only if the water level drops below the confining clay. Water levels remained above the bottom of the clay for all past and future conditions modeled.

Storage Coefficient. This term refers to the change in water storage in the confined aquifer that occurs with a change in hydraulic head.

Percentage of Node Underlain by Moisture-deficient Soil. This item defines the percentage of percolating water lost to soils containing less moisture than the specific retention factor.

Volume of Water Required to Satisfy Moisture

Deficiency. This item represents the volume of water required in 1958 to raise the soil moisture percentage to specific retention. The initial value decreases annually as soil moisture accumulates through deep percolation of applied water.

Percentage of Node Underlain by Perched Water Table. The model allows designation of a percentage of percolating water to shallow perched aquifers, but the option has not been used because it does not appear to adequately model the phenomenon.

Unit Demand. Per capita municipal and industrial water demands were based on historical uses in the Bakersfield area. The demands are expected to remain fairly constant from year to year.

Percentage Pumped from Lower Layer. This factor divides the total municipal, industrial, and agricultural ground water extractions between the upper and lower layers in the two-layer portion of the model.

Percentage Export Pumped in Lower Layer. This factor divides the total ground water extractions for export between the upper and lower layers in the two-layer portion of the model by specifying the percentage of lower-layer extractions.

Lower Layer Not Present. This factor allows direction to the model that the lower (confined) layer is not present in the nodal area.

Percentage to Deep Percolation. This item represents the portion of municipal and industrial demand (other than municipal waste water) that percolates to ground water.

Consumptive Use Percentage. This factor determines the percentage of per capita municipal and industrial water demand that is used consumptively. The percentage is derived from water use studies conducted in Bakersfield and other cities.

Percentage to Sewerage. This item represents the portion of per capita municipal and industrial water demand that becomes sewage. It is estimated from water use studies conducted in Bakersfield and other cities.

Percentage of Waste Water Applied. The proportion of treated waste water used in land disposal areas is represented by this item. It is accounted for as a source of applied water for agriculture. The unapplied remainder is assumed to deep percolate.

Irrigation Efficiency. Average irrigation efficiencies were computed by nodal areas on the basis of crop type. The fraction used is a weighted average and represents the percentage of applied water used by plant evapotranspiration.

Historical Heads. This item assigns the initial water levels to establish the starting point for simulation computations of the model's nodes. It also includes annual measurements for the remaining years of the calibration period.

Items Projected as Fixed Quantities

To compare different projections, the computer receives special instructions regarding three subsurface hydrologic items: water yield from subsidence, subsurface

boundary inflow, and water levels in dummy nodes. Before the model run, these items are submitted as fixed values, as opposed to being calculated by the model in response to a water situation defined by a potential set of conditions. The assumed subsidence rate, for example, should be greater with no California Aqueduct water than with a full aqueduct supply on which to rely. Similarly, special consideration must be given to subsurface boundary inflows (excepting the north boundary) and to water levels in the dummy nodes that fix the subsurface flow conditions at the north boundary.

Calibration Process

During the calibration process, the computer began with initial nodal water levels and utilized historical water supply and use information to reconstruct base period nodal water levels, which were compared to those measured. Adjustments were made in the various parameters, describing surface and subsurface hydrology and geology to achieve better agreement between the model's predictions and available historical data on ground water elevation changes. The initial base period (1958 to 1966) was established on the basis of data available for this purpose. Extension of this term through 1973 was made as the information became available.

The first 29 calibration runs relied on data compiled during the 1958-66 base period. Additional information was collected from four more runs, conducted over a 15-year (1958 to 1973) span.

Water Level Data

In the simulation process, the variable input to the model is the net amount of water annually extracted from or recharged to the surface of each polygonal node -- an input derived from a preliminary computer operation that deals with the variety of surface hydrologic activities discussed earlier.

The model's answer is a calculated, annual ground water elevation at each node.

Changes in ground water storage (which are proportional to the changes in water levels) plus subsurface flows for each node must balance the annual amounts recharged or extracted within an error limit of plus or minus 12 000 cubic metres (10 acre-feet) at each node.

Model calibration accuracy is monitored by a computer-graph (printed for each node) displaying the model's computed and historical water levels for each year of the calibration period.

A typical hydrograph from Operational Run A, covering the period 1958 through 1990 and showing the historical and computed water levels for the 1958 through 1973 period, is shown on Figure 1.

If historical water level trends and model computations are parallel, future water levels projected by the model for such nodes would be reasonably accurate.

If the trends converge or diverge -- especially near the end of the calibration period -- future water levels projected by the model for such nodes would be less reliable.

The accuracy of nodal calibration is also affected by the amount of hydrologic activity at the node during the calibration period. When nodal ground water levels have undergone large changes during the calibration period -- especially if the changes include water level increases and decreases -- the response of the node to a large range of hydrologic activity has been tested.

On the other hand, if historical water levels have undergone little or no change, the response of the node has only been tested for a limited range of hydrologic activity.

Classes of Water Levels in Model. Historical water levels are divided into three classes (initial, dummy node, and comparison) according to their function in the model.

Initial Water Levels. Initial water levels are those recorded at the beginning of the first year of the modeling period -- 1958 for the calibration runs. These water levels define the elevation of ground water in storage as well as the gradients that cause subsurface flow at the beginning of the calculations. Every node has an initial water level; therefore, if no measurements are available, an estimate is made.

Dummy Node Water Levels. Dummy node water levels are those assigned to the nodes in Kings and Tulare Counties on the model's north boundary. They have an assigned value for each year, and, in conjunction with the computed water levels of the contiguous nodes inside the model, they determine the hydraulic gradient causing subsurface flows across the boundary.

Each dummy node has an assigned annual water level, and missing measurements for the calibration period are estimated. For projections, future water levels in contiguous parts of Kings and Tulare Counties must be estimated based on projections of water supply and demand for those areas. The estimated levels are adjusted each year as new water level measurements are published by the Department of Water Resources.

FIGURE I

COMPUTER-PRINTED HYDROGRAPH

FOR NODE 104 (Simulated)

KERN COUNTY GROUNDWATER INVESTIGATION OP RUN A BASIC FORECAST, INCLUDES CALIFORNIA AQUEDUCT WATER

180.0	200.0	220.0	240.0	260 . 0	280.0	300 _• 0	320 _• 0	340 <u>.</u> 0	360.0	380.0	COMPT 228.0	HIST 228.0
1958 II	T	X	0 +	<u>-</u>			T				237.6	234.0
1959 I			0+								233.0	232.0
1960 I 1961 I			-0								228.0	229.0
		0+	-0								222.0	220.0
1962 I											225.7	224.0
1963 I		0+ X									226.8	226.0
1964 I		+									221.4	220.0
1965 I		+0									223.7	225.0
1966 I		+ 0									217.4	221.0
1967 I 1968 I		0	+								230.8	215.0
1969 I		+	0								221.7	230.0
1970 I		т	0+								233.5	231.0
1970 I 1971 I		X									227.1	227.0
1971 I 1972 I		+ 0	•								222.3	225.0
1973 I		+ 0									217.4	223.0
1974 I		+									214.6	
1975 I		+									212.0	
1976 I		+									210.1	
1977 I		+									208.7	
1978 I		+								•	207.7	
1979 I	+	•									206.9	
1980 I	+										206.4	
1981 I	+										206.0	
1982 I	+										205.8	
1983 I	+										205.7	
1984 I	+										205.6	
1985 I	+										205.6	
1986 I	+										205.7	
1987 I	+										206.0	
1988 I	+										206.2	
1989 I	+										206.5	
1990 I	+										206.7	

ELEVATION IN FEET ABOVE SEA LEVEL VERSUS TIME IN YEARS

^{0 =} Historical water level elevation

^{+ =} Computed water level elevation

X = Point where computed and historical water levels coincide

Comparison Water Levels. Comparison water levels do not enter into the computer calculations. These levels, measured for the calibration period, are the standards that the computed water levels are compared with to determine if the model's calibration is satisfactory. It is important to determine the authenticity of the historical water level before the computed water level is discounted.

When making comparisons with the standard, it should also be noted that the computed hydraulic head is an average water level for the node, while the historical water level — the water level measured in an individual well in the node — represents the water level at a single point and may be influenced by local transient phenomena such as nearby pumping or recharge.

Determination of Historical Ground Water Elevations

Historical ground water levels used in Calibration Runs 1 through 10 were determined from water-level contour maps prepared by the Department.

Since these contour maps require interpretation between the measured wells, and because well data are sparse in some areas, several of the resulting nodal hydrographs tended to fluctuate without relationship to ground water pumping or recharge.

Historical records covering about 25 nodes had one or more points in error by as many as 24 metres (80 feet), relative to selected observation wells or projected water levels for other years. Many of the larger errors were in nodes along Semitropic Ridge and nearly all were north of Kern River.

Water levels for the upper layer (based on Department contour maps) also appeared to have a bias toward lower elevations. This was probably caused when contours were drawn to measurements from wells perforated in both aquifers when no upper aquifer well measurements were available.

Measurements from Selected Observation Wells. To eliminate large errors and obtain historical ground water levels that more closely approximate the true fluctuations of ground water levels in the two main aquifers, water levels based on contour maps were replaced by levels based on selected observation wells.

Criteria for selecting wells were that (1) reported depth or perforated intervals limited the well openings to one aquifer; (2) measured water levels corroborated the single-aquifer construction; (3) measurements were as nearly continuous

as possible through the 1958-67 calibration period; and (4) if more than one well met the first three tests, the one nearest the node center was selected.

Water levels from wells located up- or down-gradient from the node centers were sometimes used, after adjustment, by adding or subtracting a constant from all measurements.

Revised Water Levels. Use of historical nodal water levels based on the selected observation wells greatly improved the model calibration. One undesired result was that many nodes were left without historical water levels as a basis for calibration because no observation wells could be found. But on the other hand, the model was not forced to match data of questionable value that could have been misleading.

Water levels for most of the unconfined nodes were based on observation wells for all runs after Calibration Run 10. More water levels from observation wells were added before Runs 18 and 19, and after Run 28 the modeling time was extended from 1958-67 to 1958-73. For the extended period, observation wells were selected for 30 nodes where no historical water levels were available for the earlier period.

No observation wells to determine initial water levels were found for 48.6 percent (190 of 391) of the nodes in the spring of 1958. Water level measurements specific to only one aquifer were not found for any year of the entire 16-year period (1958 through 1973) for 35.8 percent of the nodes (140 of 391). Between 1958 and 1973, the number of nodes with measured water levels ranged from 192 (in 1958) to 144 (in 1965) and averaged 167, or 42.7 percent.

No suitable observation wells were found for a line of unconfined nodes along Semitropic Ridge, or for an interesting alignment of nodes trending from Goose Lake to Wasco. Water level data for unconfined nodes were also absent south of Buena Vista and Kern Lakes and for several nodes along the east side of the model (north of Bakersfield). In all, no wells representative of the unconfined aquifer were found for 21.7 percent (47 of 217) of the unconfined nodes.

In the confined nodes, only a few observation wells were found along the entire west side, and only about a dozen confined nodes in the south half of the model had observation wells. Some of the nodes with data were near the east edge of the confining clay, and the remainder were just north of Wheeler Ridge. No water level measurements were found for any of the 16 years for 53.4 percent (93 of 174) of the confined nodes.

Observation wells drilled by the Department and the U. S. Bureau of Reclamation improved water level data in the model area.

Twelve core holes drilled in Kern County in 1951 and 1952, as part of a Bureau program in the San Joaquin Valley, provided water level data for the unconfined nodes. Ten other holes furnished data for confined nodes.

Between 1967 and 1969, the Department drilled 18 observation wells near the California Aqueduct alignment -- most of them in the 60-to-90-metre (200-to-300-foot) range. For the extended 1958-73 period, the Department's observation holes provided water level data for 3 confined and 14 unconfined nodes.

Improvements in Water Level Data. Location or construction of a minimum of 20 observation wells would be required to fill the gaps in ground water elevation data. As a first step, another thorough canvass should be made in nodes without water level data, using the criteria mentioned above to select additional observation wells.

Model Operation

After the calibration process was complete, the model was given several sets of future water supply and use conditions and was operated to predict the ground water level changes that would take place under these conditions through 1990.

For each of these future water conditions, the model can predict the elevation of water levels and areas where future drainage problems may occur. It can predict, for example, what will happen if greater water imports are made to the east side of the Valley, or if west side (California Aqueduct) deliveries are less than anticipated.

It can also predict the effect -- again in terms of water level changes -- of modifications in crop patterns or irrigation methods.

Although the model, as calibrated, is believed to reasonably approximate the real situation in the ground water basin, adjustment and improvement processes continue.

As new information is obtained on the basin's hydrology and geology, the model's mathematical description of the basin, along with its predictions of changes, can be improved. Periodic updating of land use information and replacement of imported water estimates with historical data will keep the data base current and make future estimates more realistic.

Projected Futures

The norm to which alternatives are compared is based on current or planned water delivery system schedules established as of 1973 by the Kern County Water Agency's member districts and other water districts. The basic projection from 1958 through 1990 is labeled Operational Run A and was conducted on May 30, 1974.

Surface Water Supply Projections. Future surface water deliveries for Operational Run A are distributed to the nodal areas according to water supply contracts and in keeping with the average deliveries of water supplies established during the 1958-66 base period.

Future deliveries from the Kern River are based on long-term, regulated median flows monitored at the First Point gaging station. The deliveries are distributed to nodal areas according to use patterns established during the base period.

Future water deliveries from the Friant-Kern Canal are founded on average project allocations. The distribution pattern is the same as during the base period in all areas except the Arvin-Edison Water Storage District, where normal supplies were not received during the base period.

Future California Aqueduct water deliveries are scheduled according to existing water service contracts with the Kern County Water Agency.

Agricultural System. Future agricultural trends are determined from current water district plans. The agricultural water demand of each nodal area is calculated from unit water uses and irrigation efficiencies for each crop type. If surface water deliveries and effective precipitation fail to satisfy agricultural demands, the model computes ground water extractions required to meet water needs.

The computerized program controls the relative amounts of ground water extracted from confined and unconfined aquifers. The ground water reservoir is recharged through deep percolation, although absorbent moisture-deficient soils inhibit this process in certain areas.

Municipal and Industrial System. Municipal and industrial water uses are related to the population projections of urban nodal areas. Per capita water demands not met by imported water are satisfied by ground water extractions. In each nodal area, empirical factors are used to determine the fraction of total demand lost to deep percolation, consumptive use, and waste water treatment plant disposal.

Waste water from treatment plants is available for agricultural purposes. Otherwise, it percolates into the underground reservoir.

Population projections, ground water extraction plans, and waste water disposal techniques are used as data control references for the operation of this system.

Computer Calculations and Answers

The computer views the ground water basin as a series of nodal areas. Actually, these areas are cells described by surface area and the depth of the aquifer. Where a two-layer aquifer exists, the model uses one cell to describe the upper aquifer and another (below it) to depict the lower aquifer.

Water movement between cells is defined by complex differential equations. These equations — one for each cell — are solved by a "relaxation" method in which the computer makes a succession of flow and water level estimates, reducing its margin of error with each appraisal. In this manner, the computer determines the volumes and rates of subsurface water flow resulting from the model's combined hydrologic activities. Water level variations are computed as the annual water level balance is calculated.

Computer printouts summarize annual water levels and balances for (1) each nodal area, (2) selected nodal groups that approximate water district boundaries, and (3) the model area as a whole to encourage result-comparisons of different water management plans.

Water elevations at nodal centers can be used to evaluate long-term simulation runs. Ground water contour maps can also be drawn for more detailed analysis.

Information provided by the model is utilized by the Kern County Water Agency to determine the effect that imported, California Aqueduct water has had on ground water levels.

Although the model was designed to evaluate subsurface water flows, and not water quality, some of the model's predictions suggest that water quality problems will likely occur along the northeast and west sides of the model area.

Projected Water Level Trends. Operational Run A (May 30, 1974) predicted the response of the ground water basin to future water supply and demand, based on district plans and contracts in effect in 1973.

The average ground water level trends for the entire model area (described in terms of a ten-year period from 1980

to 1990) show a slight decline of approximately 0.6 metre (2 feet). After recommended changes are made in the future rates of subsurface inflow and subsidence, the predicted rate of decline is expected to increase slightly. This is a reflection of predicted future overdraft conditions, which have been modified both by subsurface inflow from basin storage outside the modeled area and by water produced through compaction of voids during subsidence.

In evaluating the reported trends, it should be kept in mind that a decline in an unconfined aquifer's water level represents dewatering of pore space and therefore a significant change in ground water storage. A decline in confined aquifer levels, however, represents a pressure change with only a slight storage change. Water level trends are shown in Table 1 in terms of areas covered by organized water districts or improvement districts, approximated by nodal area boundaries on Plate 2. All values for water level changes refer to the ten-year change from 1980 to 1990.

Evaluation of Model

Operation of the ground water model was assessed for the Kern County Water Agency by Mr. Charles R. Wilson of the Leeds, Hill & Jewett consulting firm, in connection with the Agency's use of the model to determine "zones of benefit" from California Aqueduct water (Wilson, 1975).

Using statistical techniques to compare computed and historical changes in water levels, the assessment concluded that on an overall basis the system "quite accurately" modeled the unconfined aquifer but added that, judging from available data on actual changes in water pressures, the confined aquifer was modeled less accurately. Still, if the model's projections of future events are "generally correct", the report states, "the ... analysis of the accuracy of the ground water model has shown that it would be possible to forecast long-term trends and averages with reasonable accuracy."

CHAPTER III. HYDROLOGIC FACTORS IN MODEL CALIBRATION

Calibration of the ground water model depends on an accurate accounting of all water flows in and out of the model area during a carefully selected base period.

The main sources of water for the model area are the Kern River, the Friant-Kern Canal, and more recently, the California Aqueduct. The major withdrawal of water from the area is due to consumptive use by agriculture.

These and other elements of the water accounting balance were examined in detail to establish the essential relationship between inflow, outflow, and changes in the ground water basin storage during the base period.

Selection of Hydrologic Base Period

An ideal hydrologic base period usually represents long-term hydrologic conditions in the basin. It will also include normal and extreme conditions and be well documented. Further, if the beginning and end of the base period are preceded by dry years, the accounting for "water in transit" is minimized. "Water in transit" is water moving through the unsaturated zone between the land surface and the water table.

The years 1958 through 1966 were chosen as a base period for the Kern County ground water model study, with data availability the greatest factor in the decision. The most reliable record of ground water extractions from the basin was compiled by the U. S. Geological Survey for the 1962-66 period. Department information gathered in a 1958 land use survey was also available, along with data collected in a survey of irrigated lands completed in 1966. Water in transit, or moisture in storage, in the vadose zone at the beginning and end of the base period can be assumed to be equal since the source of the percolating water is the regularly applied water supplies rather than precipitation -- supplies that do not vary greatly from year to year.

Base Period Deviations from Average

Precipitation during the base period was nearly normal, although it did not include any extremely wet years, and the beginning and end were not immediately preceded by dry years. Water supply from subsidence is nonrecurring and will not be available when water levels are lowered again. Water loss to moisture-deficient soils is also nonrecurring.

Precipitation

Precipitation records from seven stations in the basin were examined and compared to determine the percent deviation of the base period average from the long-term historical average. Station locations are shown on Plate 4, and a summary of each station's precipitation record is provided in Table 2.

TABLE 2

LONG-TERM AND BASE PERIOD

MEAN PRECIPITATION AT SELECTED STATIONS

Station and Period	: Long- : term : Mean : (inches)	: Base : Period : Mean :(inches)	: Percent :Deviation :
Bakersfield Airport 1937-1966	5.94	5 . 26	- 11.4
Buttonwillow 1940-1966	4.95	4.89	-1.3
Delano 1950-1966	6.55	6.97	+6.4
Lost Hills 1913-1966	5.36	5.30	-1.1
Taft 1949-1966	5.26	5.68	+7•9
Tule Field 1949-1966	5.13	5.03	- 2.0
Wasco 1899-1966	6.17	6.15	-0.3

Surface Runoff

The effects of the Kern River's regulated runoff are probably more crucial than those of precipitation in determining the amount of water in transit in this arid area during a base period.

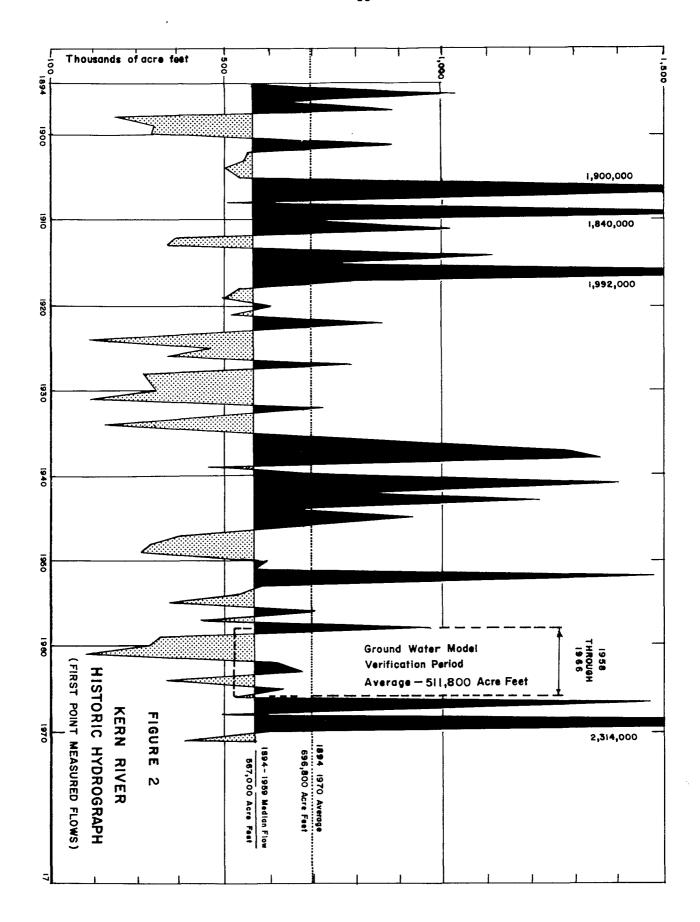
A 73-year history of Kern River flow at a location designated as First Point (southwest quarter of Section 2, Township 29 south, Range 28 east, Mount Diablo Base and Meridian, 1.6 kilometres -- about a mile -- below the Kern County powerhouse) shows the long-term mean runoff to be 824 hm³ (668,200 acre-feet) per year. The calendar year regulated mean for the 1958-66 base period was 631 hm³ (511,800 acre-feet) per year, or 76.6 percent of the long-term average.

The record of Kern County runoff is shown graphically in Figure 2.

Surface Water Inflow

Surface water inflow is defined here as that water entering the modeled area in major and minor stream channels and in canals. Streams and conveyance facilities are shown in Plate 4.

During the 1958-66 base period, the annual surface water supply to the ground water basin area of Kern County averaged approximately 918 hm³ (744,000 acre-feet) per year. About 69 percent of this supply was Kern River runoff, while 27.5 percent was Friant-Kern Canal water and 3.5 percent was minor streamflow.


In making projections, consideration must be given to (1) the Friant-Kern Canal, which will eventually deliver approximately 493 hm³ (400,000 acre-feet) of water annually to this area, and (2) the knowledge that increasing amounts of water will be delivered from the California Aqueduct. Aqueduct deliveries began in 1968, with an initial delivery of 157 hm³ (127,400 acre-feet). The maximum delivery of approximately 1 546 hm³ (1,253,400 acre-feet) per year (including surplus waters) is now expected in 1981 instead of 1990 as was originally projected.

Kern River Inflow

The Kern River, which originates in the Sierra Nevada and enters the Valley near Bakersfield, is the only major stream in Kern County. Annual variations in water supplied by the river are reflected in changes in ground water levels in the basin area.

Runoff from the river has been recorded at First Point since 1894. The record is shown on Figure 3 and tabulated along with other surface supplies in Table 22 (Appendix B).

During a 73-year period from 1894 through 1966, First Point flow averaged 824 hm³ (668,200 acre-feet) per year and

ranged from an annual high of 2 457 hm³ (1,992,000 acre-feet) to an annual low of 218 hm³ (177,100 acre-feet). The historic maximum flow of 2 854 hm³ (2,313,800 acre-feet) was measured during 1969.

Isabella Dam, a flood control project on the Kern River, was completed in 1954. Regulated flow from 1954 through 1971 averaged 823 hm³ (667,500 acre-feet) per year.

In the model, the computer was given the Kern River diversions as the total Kern River flow. The First Point records -- which presumably represent the entire flow into the model, except for the rare instances where flood flows leave the model area -- were used as a check on the diversion totals. Because of gaging problems in the First Point flow or diversions (or both), the two figures do not agree precisely for all years of the base period, although the differences between annual totals are considered to be well within acceptable limits of accuracy for gaging flows and deep percolation losses of this magnitude.

Minor Stream Inflow

Flow records have been established on several minor streams in Kern County, but records covering a period of five years or more are available for just five streams.

Poso Creek. Poso Creek, the only minor stream with an appreciable annual basin inflow, enters the Valley approximately 19 km (12 miles) north of Bakersfield. The earliest flow records for this stream were made by the Kern County Land Company at the Mons Station, 26 km (16 miles) upstream from Highway 99 (as Section 9, T28S/R29E, MDB&M). They cover the period between 1945 and 1964.

The U. S. Geological Survey established a gaging station at First Point in 1960, and since then data have been recorded annually at this location.

Most oil field waste waters (a major fraction of this stream's inflow) enter Poso Creek downstream from the Mons and First Point stations and are therefore not included in their records. The waste waters, which enter the creek near the Highway 155 bridge, averaged 9 600 000 m³ (7,800 acre-feet) per year during the base period, and by 1968 the annual supply had risen to 32 hm³ (26,000 acre-feet).

The quantity of oil field waste water delivered to Poso Creek is now regulated by controls placed on the quality of discharges to the basin. Future waste water projections will reflect this change in water supply. Surface flow gages have been maintained by the Kern County Land Company (now Tenneco West) and the North Kern Water Storage District on Poso Creek at Highway 99, about 16 km (10 miles) downstream from the eastern boundary of the basin model, and on the Wasco-Pond Highway, 9.7 km (6 miles) west of Highway 99.

Ground water recharge from Poso Creek runoff and oil field waste water were calculated after comparing and analyzing all gaging station data. The records from the stations are shown in Table 22 (Appendix B).

San Emigdio Creek. The U. S. Geological Survey has compiled records for San Emigdio Creek (Township 11 north, Range 22 west, San Bernardino Base and Meridian) runoff, beginning in March 1959. The average surface flow for the 1960-69 period was approximately 1 360 000 m³ (1,100 acrefeet) per year, a large portion of which was absorbed by the moisture-deficient soils as it entered the model area.

Caliente Creek. Caliente Creek runoff has been recorded since October 1961 at a point 2.7 km (1.7 miles) west of Caliente (T30S/R31E, MDB&M). The annual runoff since 1962, excluding Walker Basin Creek water that enters the stream below the gaging station, has averaged 2 606 000 m³ (2,113 acre-feet) per year. Records cover only five years of the nine-year base period. The calculated average from that period is 1 277 000 m³ (1,035 acre-feet) per year.

Water from Caliente Creek reached the model area in 1966, when an estimated 12 300 000-m³ (10,000-acre-foot) flow entered the Valley. Since only 1 124 000 m³ (911 acrefeet) of flow was recorded at Caliente Creek that year, it is assumed that nearly all the water came from Walker Basin Creek.

Tehachapi Creek. The seven-year recorded average flow for Tehachapi Creek (1963 through 1969) is 229 000 m⁵ (186 acre-feet) per year. This stream also enters Caliente Creek below the gaging station. During the 1969 flood, Tehachapi Creek flow was recorded as 1 290 000 m⁵ (1,050 acre-feet).

Pastoria Creek. Records of flow in Pastoria Creek (TlON/R19W, SBB&M) were begun in October 1964 and averaged 770 000 m³ (624 acre-feet) per year.

Other Minor Streams. Fourteen other minor streams with limited or no flow records were examined, and inflow from the drainage areas of each was estimated. The inflow was estimated for each of the nine base-period years by correlation with measured inflow of Caliente and San Emigdio Creeks.

The estimated inflow for the streams listed below is presented in Table 22 (Appendix B).

Santiago Creek Los Lobos Creek Pleito Creek	T11N/R23W, T11N/R22W, T11N/R21W,	SBB & M SBB & M SBB & M
Salt Creek	Tlon/R20W,	SBB & M
Tecuya Creek	TllN/R2OW,	SBB & M
Grapevine Creek	TllN/Rl9W,	SBB & M
El Paso Creek	TllN/Rl8W,	SBB & M
Tunis Creek	TllN/Rl8W,	SBB & M
Tejon Creek	T32S/R29E,	MDB & M
Chanac Creek	TllN/Rl7W,	SBB & M
Comanche Creek	T32S/R30E,	MDB & M
Caparell Creek	T11N/R18W,	SBB & M
Little Sycamore Creek	T32S/R29E,	MDB & M
Sycamore Creek	T31S/R30E,	MDB&M

These surface flows during the base period were distributed to the appropriate nodes of the ground water grid after making adjustments for deep percolation losses along the flow route. Only the water remaining on the ground surface as it crossed the exterior boundary of the model was counted as minor stream input to the surface water inventory.

Imported Water

Only the Friant-Kern Canal was importing water to the study area during the 1958-66 base period, although the California Aqueduct deliveries (which began in 1968) are of major consequence in hydrologic projections for the model area.

Friant-Kern Canal. The Friant-Kern Canal, a component of the Federal Central Valley Project, is a major facility that delivers municipal, industrial, and agricultural water to the eastern edge of the San Joaquin Valley.

Four districts in Kern County have long-term contracts for firm and surplus water supplies from the system -- Delano-Earlimart Irrigation District, Southern San Joaquin Municipal Utility District, Shafter-Wasco Irrigation District, and Arvin-Edison Water Storage District. Other agencies occasionally receive surplus waters from the Friant-Kern Canal.

Friant-Kern Canal water was first delivered to Delano-Earlimart ID in 1950, to Southern San Joaquin MUD in 1951, to Shafter-Wasco ID in 1957, and to Arvin-Edison WSD in 1966.

Total Friant-Kern deliveries to Kern County during the base period are shown in Tables 3 and 4 along with itemized deliveries since that time to the respective districts.

LONG-TERM CONTRACTORS AND
FRIANT-KERN CANAL DELIVERIES TO KERN COUNTY
(in acre-feet)

Calendar Year	:	Delano- Earlimart IDL	:	South San Joaquin MUD	Shafter- Wasco ID	:	Arvin- Edison WSD
1950 1951 1952 1953 1954 19556 1956 1958 19661 19662 19664 19664 19667 1968 1969 1971		800 4,700 9,100 10,200 13,700 19,000 24,100 21,100 21,200 15,400 12,200 23,000 22,700 17,900 23,700 18,500 22,700 15,000 20,700 20,800 19,400		22,300 40,400 72,200 94,900 105,900 124,000 114,900 101,600 94,700 76,600 127,700 124,500 114,600 131,500 114,300 129,800 92,600 115,600 129,700 116,400	2,100 32,900 42,500 45,900 46,000 45,300 55,100 50,800 51,400 47,800 57,300 57,300 57,500		3,000 0 0 0 0 0 100 38,900 70,500 54,600 176,800 143,000 141,100

^{1/} These figures represent 14 percent of total
 deliveries to district; remainder of deliveries
 went to Tulare County portion of district.

California Aqueduct. Since there were no deliveries to the Kern County area from the California Aqueduct during the base period, this source did not affect the water inventory.

The imports from the aqueduct are now a major item in the basin hydrology, however, and estimated future deliveries of State Water Project water are shown on Figure 3.

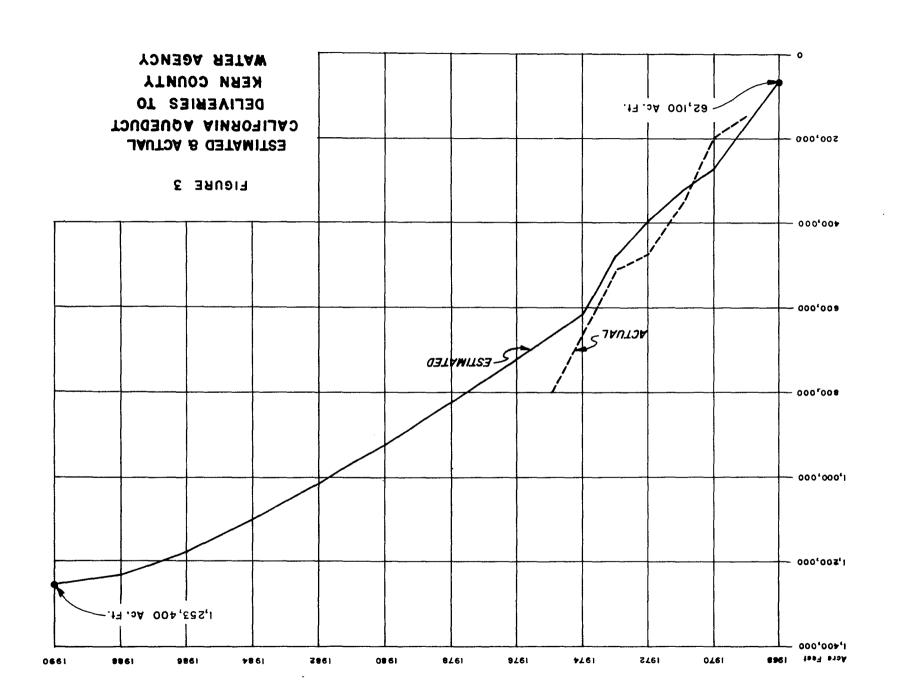
Actual deliveries of water are increasing at an annual rate exceeding that of these estimates, and it is anticipated that the maximum allocations will first reach Kern County during 1981.

TABLE 4

SHORT-TERM CONTRACTORS AND
FRIANT-KERN CANAL DELIVERIES TO KERN COUNTY

(in acre-feet)

Calendar Year	Alpaugh ID	Buena- Vista W SD	: Rag Gulch : WD1/	Rosedale- Rio Bravo WSD	County of Kern	Kern County Water Agency	PG & E Power Plant	: Operations :and Wasteway : Spills : and Others
1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970	3,000 0 0 0 0 0 0 0 0 6,000 700 6,900 800 300	52,300 0 0 15,700 19,700 0 27,700 3,000 8,500 0 9,500 8,000	3,300 0 0 3,000 4,900 5,000 3,300 200 5,700 300 5,600 600	9,800 15,900 0 8,800 4,900 15,000 0 0	7,000 <u>2</u> /	0 13,000 <u>3</u> /	2,900 0 0 0 1,300 1,200 1,500 3,000 0	7,400 500 3,200 800 500 700 1,300 40 200 9,200 100 17,300 1,900 0


^{1/} These figures represent 55 percent of total deliveries to district; remainder went to Tulare County portion of district.

^{2/} Delivered to Lake Woollomes.

^{3/} Delivered to Kern River channel.

O

كالمار إستويها والماليات الماليات

Surface Water Outflow

No surface water outflow from the model area was recorded during the base period, although during extremely wet years the Kern River flows — and possibly some flow from Poso Creek — move northward into Kings County.

Kern River Outflow

In normal years, all Kern River water is diverted into canals for irrigation use. During extremely wet years, water historically flowed into Jerry Slough and followed the old channel northward through Goose Lake and Goose Lake Slough to Tulare Lake in Kings County.

High water sometimes reaches Buena Vista Lake when the river channel cannot hold the flows. Excess water from the lake is usually diverted into the flood canal and sent along the old Kern River route, where portions of water are diverted into a system of sloughs and waterways, while the main flow moves north to Tulare Lake.

The annual river outflow has averaged approximately 86 hm³ (70,000 acre-feet), but the volume was reduced in 1954 with construction of Isabella Dam.

Buena Vista Water Storage District records of surface flow at Highway 46, about 4 km (2.5 miles) east of Lost Hills and approximately 19 km (12 miles) south of the northern Kern County boundary, are shown in Table 5.

TABLE 5

KERN RIVER FLOW AT HIGHWAY 46

Water Year1/:	Acre-feet
water rears	WCI.e-I.ee.
1936-37 1937-38 1940-41 1941-42 1943-44 1951-52 1954 - Isabella Dam 1969-70 14-year mean (1954-69)	252,200 393,600 441,600 109,800 454,300 210,200 constructed 315,700 22,500

^{1/} No flows during other years.

Poso Creek Outflow

Poso Creek surface runoff is normally contained in the improved natural channel of Poso Canal and its associated facilities. During extremely wet years, it is probable that excessive runoff flows northward across the county boundary, but no such instances have been documented. In 1958, flood waters nearly reached the County's northern boundary in T25S/R23E, MDB&M. An estimated 25 hm³ (20,200 acre-feet) of Poso Creek water was reportedly diverted for use in the Kern National Wildlife Refuge during the 1969 flood period.

Streamflow Diversions

Streamflow diversion in the model area is defined as any unnatural form of streamflow transportation, including pipes, ditches, or canals.

Kern River Diversions

Diversion of all Kern River flow, except that resulting from storm or flood-stage runoff, is specified under the Miller-Haggin Agreement of 1888. Under that agreement, Kern Island Irrigating Canal Company acquired rights to the first 8.5 m³ (300 cubic feet) per second of flow throughout the year. From March through August, the Miller interest received one-third of the remaining flow measured at the First Point gaging station. That water was to be delivered at the Second Point of measurement, about 32 km (20 miles) downstream of Bakersfield. The other two-thirds of the remaining flow was assigned to the Haggin interests.

From September through February, any water in excess of the 8.5 m³/s (300 cfs) above the Second Point went to the Haggin interests. The Miller interests were granted rights to all water passing Second Point.

All of the diverted water is for agricultural use, and the rights are held by the original entities or their heirs or assigns.

Classification of the Kern River diversions is now made according to the point at which the entitlement is measured.

The First Point group includes canal companies and districts formerly owned by or associated with the Kern County Land Company (now Tenneco West). The Second Point group is the Buena Vista Water Storage District and its associates. Lower river interests include Tulare Lake Basin Water Storage District and Hacienda Water District.

During the 1969 flood period, a one-time diversion of Kern River flow was made through the California Aqueduct to the Lost Hills Water District and the Belridge Water Storage District. Of the total Kern River flood flow of 2 854 hm³ (2,313,800 acre-feet) (measured at First Point), 111 hm³ (90,100 acre-feet) was diverted through use of the aqueduct to the districts.

Poso Creek Diversions

Annual diversions of approximately 1 400 000 m³ (1,100 acre-feet) of Poso Creek flow was made during the base period for use by farmers outside the model area. The remaining portion of surface runoff in the model area was used by individuals and companies with agricultural water conveyance systems located near the Poso Creek channel.

During flood-stage runoff years, Poso Creek water is sometimes diverted through canal and ditch systems to the Kern National Wildlife Refuge. There, it is impounded and used either for recreation or to grow crops for waterfowl feed.

Minor Stream Diversions

Minor streams entering the basin provide a sporadic water supply that usually percolates from the stream channels to recharge ground water reservoirs. Some of this water is diverted for surface spreading over agricultural areas during high runoff years.

Determination of Seasonal and Effective Precipitation

The valley portion of Kern County receives slight rainfall, with annual averages from various stations ranging from 130 to 230 millimetres (5 to 9 inches) -- resulting in an annual average of approximately 150 mm (6 inches) for the entire area.

Normal rainfall produces no runoff over most of the Valley and only limited runoff in other areas. During wet years, however, sheet flow sometimes develops over large areas on the Kern River fan and overflow areas. The flows produce local erosional cuts and fill sloughs and ditches created by previous storms.

Local runoff during 1969 contributed an estimated 18 hm³ (15,000 acre-feet) of water to the Kern River runoff passing Highway 46 near Lost Hills.

Weighted Average Precipitation

A perusal of precipitation records from seven stations in the ground water basin area (shown in Plate 4) revealed that the amount of rainfall is controlled by localized weather conditions. Because of wide variations in monthly precipitation during the 1958-66 base period, it was concluded that a weighted average factor should be developed and applied to recorded data for all areas in the study through use of the Thiessen polygon method (Thiessen, 1911).

Precipitation records for each station are shown in Table 23 (Appendix B).

Combined monthly precipitation data for the base period from each recording station were adjusted to establish a weighted mean rainfall total for monthly application to all areas under study. This average precipitation supply was made available to satisfy a portion of the consumptive use requirement of crops growing during that period. The weighted monthly areal precipitation for the model area is presented in Table 24 (Appendix B).

Effective Precipitation

Many hydrologists consider rainfall in an arid area an asset to the water accounting system only if the annual rainfall exceeds 200 mm (8 inches). Others consider only the amount of precipitation that contributes at least 13 mm (.5 inch) of rain in a given storm.

Effective precipitation is defined for this study as the amount of rain that falls during the growing season of major crops. It is assumed that this amount of effective precipitation will replace an equal amount of water that would normally be supplied to meet the agricultural demand at that time. It is estimated that this annual contribution to the water supply averages 162 hm³ (131,600 acre-feet).

The growing season for all major crops in Kern County was determined, and the estimated monthly consumptive use requirement of each crop was recorded for this study. It was then assumed that rainfall that satisfied a portion of these monthly consumptive use requirements should be considered effective precipitation.

Annual effective precipitation in the basin area was calculated for the 1958-66 base period by multiplying the irrigated acreage assigned to each major crop by the estimated effective precipitation during the respective growing seasons. The total effective precipitation for each year including amounts determined for all major crops is presented in Table 25 (Appendix B).

It was assumed that all nodal areas of the ground water model were large enough (each is $23~\rm{km}^2$ -- 9 square miles -- in area) to produce their proportionate share of major crops affected by this precipitation.

Unit Effective Precipitation

By definition, total effective precipitation used by all crops is the total effective precipitation available to crops during the growing season. This total volume was made available to the model's nodal area through a "unit effective precipitation" determined each year by dividing the total effective precipitation by the total irrigated acres reported for that year. This unit effective precipitation was then multiplied by the total irrigated acres in each nodal area to determine the total effective precipitation for each year considered. A summary of effective precipitation totals for the entire study area is given in Table 6.

TABLE 6
EFFECTIVE PRECIPITATION
MODEL STUDY AREA

Year :	Unit EP (acre-feet per acre)	Area (acres)	Total EP (acre-feet)
1958 1959 1960 1961 1962 1963 1964 1965	0.39 0.13 0.17 0.08 0.23 0.35 0.14 0.27 0.10	598,000 608,000 616,000 626,000 635,000 645,000 655,000 665,000	236,200 79,300 105,400 50,400 147,000 227,000 92,200 179,100 67,800
Average 1958–66	0.21		
1969 1971	0.23 0.18	737,000 750,000 <u>1</u> /	169,500 135,600

^{1/} Data from NASA flight information.

Effective Precipitation and Kern River Flow

There appears to be a direct correlation between annual total effective precipitation and Kern River flow at the First Point of measurement. During the base period the ratio

of effective precipitation to river flow varied from a maximum of 32 percent in 1960 to a minimum of 13 percent in 1966. The average ratio was 26 percent.

Effective precipitation totals for the study period were within 5 percent of the reported average during six of the nine years. This correlation suggests that estimates of effective precipitation can be based on recorded Kern River flow at First Point, modified by the 26-percent average ratio factor.

Waste Water

Municipal waste water treatment plants and industrial operations are the primary sources of waste water in the study area. Waste water input to municipal treatment plants increased during the base period, going from 24 hm³ (19,800 acre-feet) per year to 28 hm³ (23,000 acre-feet) per year. Oil field waste water conveyance losses, percolation, and agricultural recharge averaged approximately 6 800 000 m³ (5,500 acre-feet) per year.

Municipal Waste Water

A portion of Kern County's waste water is reclaimed through use of treated effluent from municipal waste water treatment plants for percolation from spreading ponds and irrigation of agricultural lands.

Ground water recharge is also accomplished through privately owned disposal systems associated with industrial plants, such as food processing and packing sheds.

Municipal treatment plants were operated by the cities of Delano, McFarland, Wasco, Shafter, Bakersfield, Weedpatch-Lamont, and Arvin during the base period. Amounts of waste water input to each of these systems (along with the respective populations contributing to each supply) are shown in Table 26 (Appendix B) and summarized in Table 7. Population figures were taken from a straight-line projection of data found in 1960 and 1970 federal census reports. Waste water totals are from reports on individual plants or per capita estimates based on historical data.

A review of statistics from sewered areas reveals that it would be reasonable to apply per capita waste figures to determine the approximate volume of sewage disposed through septic tanks and other private systems. The difference between a designated area's predicted volume of sewage and the actual amount received by the area's municipal treatment plant is

TABLE 7
MUNICIPAL WASTE WATER
TREATMENT PLANT INPUT

Year	:	Population	:	Waste Water (acre-feet)
1958 1959 1960 1961 1962 1964 1965 1968 1968 1971 1973 1974 1976		189,148 192,362 196,360 199,046 202,372 205,697 205,697 215,584 216,474 223,167 226,320 229,871 232,866 239,403 243,827 250,520		19,800 20,200 21,100 20,400 21,100 21,800 22,300 22,300 24,000 24,700 25,800 27,100 26,700 28,500 28,900 31,400 32,200 32,800

assumed to represent the volume handled by private systems. This volume was assigned to the deep percolation category of the water accounting system.

In order to properly distribute sewage effluent to the ground water model, it was necessary to identify each municipal treatment facility with a nodal subdivision of the populated area. This item of supply is designated "sewage" in the agricultural water sources summary.

Estimates of future sewage supplies for each municipality were made by multiplying the population's water demand by an empirically derived factor designed to calculate the total sewage available. Distribution of effluent to individual nodes was accomplished on a percentage basis by applying another empirically derived factor.

Oil Field Waste Water

Oil field waste waters contribute to the ground water inventory through percolation from sumps, spreading areas, and other recharge facilities.

As shown in Table 8, conveyance losses, deep percolation, and agricultural recharge from this source increased steadily during the base period.

TABLE 8

CONVEYANCE LOSS, DEEP PERCOLATION, AND AGRICULTURAL RECHARGE OF OIL FIELD WASTES (in acre-feet)

Year	Conveyance Loss and Deep Percolation	Agricultural Recharge
1958 1959 1960 1961 1962 1963 1964 1965	2,800 2,800 2,800 2,900 2,900 2,900 3,000 3,000 3,200	2,300 2,300 2,300 2,300 2,300 2,500 2,600 2,800 3,300
Average 1958–66 1972	2,900	2,500 4,700

Statistics shown in Table 8 are from the files of the California Division of Oil and Gas. A more detailed summary of the oil field waste discharges is given in Tables 27 and 28 (Appendix B).

In July 1968, the Getty Oil Company completed a water recycling plant designed to clean and soften waste water produced with the oil from the Kern River field. By September 1972, the plant was daily processing 63 600 m³ (51.6 acre-feet) of water, of which approximately 47 700 m³ (38.7 acre-feet) was used daily in the oil field recovery process and about 15 900 m³ (12.9 acre-feet) per day, or 5 800 000 m³ (4,700 acre-feet) per year, was discharged into the Beardsley Canal for delivery to farmlands.

For years, most of the Poso Creek flow has consisted of oil field waste water. As a result of increased accumulations of chemicals in the ground water basin, the California Regional Water Quality Control Board placed limitations on the allowable chemical quality of discharges. It is expected that the new limitations will force oil field operators to find other waste water disposal sites, a move that will affect the basin's water balance.

Waste water produced by each oil field was distributed to ground water nodes by inspection of oil sump locations. In the case of percolation, it was assumed that the fluid was evenly divided among several ponds associated with each field. Since about half the impounded water evaporates, only half the reported supply was considered a conveyance loss to deep percolation.

Agricultural Waste Waters

Agricultural waste waters have not been reclaimed for reuse or removed by export facilities (evaporation ponds are being considered for a local disposal system). Some of this water is accumulating in low-lying areas, and eventually these concentrations and new annual accumulations will have to be removed from the Valley if lowland farming is to continue.

Artificial Recharge of Fresh Water

During the base period, four agencies in the model area were engaged in artificial recharge of the ground water basin — two of them only in the final years of the 1958-66 period. In addition, flood stage waters from the Kern River and other model area streams are diverted to recharge locations by a number of canal companies and agricultural interests. Recharge areas are shown in relation to the nodes in the model in Plate 5.

Besides the deliberate recharge operations, canal conveyance losses and deep percolation from over-irrigation contribute substantially to ground water recharge in the model area.

Kern County Land Company (Tenneco West)

For years, Kern County Land Company (now Tenneco West) has spread surface water for ground water recharge in the North Kern Water Storage District. The program uses water from Kern River and Poso Creek whenever available.

Records from the Company's spreading ponds in T26S/R25E, T27S/R25E, and T28S/R26E, MDB&M, predate all others in Kern County. Amounts of recharge by the Company and the nodes to which it was allocated are shown in Table 9.

Rosedale-Rio Bravo Water Storage District

Rosedale-Rio Bravo Water Storage District has spread surplus Friant-Kern Canal water along with its annual allocation of Kern River water since 1962. The system consists of

GROUND WATER RECHARGE
NORTH KERN WATER STORAGE DISTRICT
(in acre-feet)

Year	:	Node 46	:	Node 63	:	Node 87	Node 93	:	Total
1958 1959 1960 1961 1962 1963 1964 1965 1966 Average 1958-66		28,300 2,500 4,600 1,100 6,600 13,800 800 7,100 3,300 7,600		28,100 2,500 4,600 1,100 6,100 13,800 800 7,100 3,300 7,500		30,500 2,700 4,900 1,200 7,100 15,000 900 7,700 3,600 8,200	25,200 2,700 4,900 1,100 7,100 14,600 900 7,600 3,600		112,100 10,500 18,900 4,400 27,000 57,200 3,500 29,500 13,800

a headworks and diversion structure on the Kern River, a canal to transport water to the old Goose Lake Slough, about 16 km (10 miles) of channel, four recharge basins totaling 911 000 m² (225 acres) near the western edge of the project, and two recharge basins totaling 93 000 m² (23 acres) near the eastern edge of the project.

Between 1962 and 1971, recharge operations in the system spread a total of 535 hm³ (433,366 acre-feet) of water — an average of 56 hm³ (45,600 acre-feet) per year. In addition, Rosedale-Rio Bravo WSD expects to spread nearly all of its 43-hm³ (35,000-acre-foot) annual entitlement from the California Aqueduct for ground water recharge. Details of the sources and amounts spread by Rosedale-Rio Bravo WSD are supplied in Table 10.

Arvin-Edison Water Storage District

Arvin-Edison Water Storage District began spreading operations in 1966 with a system that included two spreading works operating in conjunction with well field extractions to convert an irregular imported water supply to firm delivery service for its users.

Between 1966 and 1973, Arvin-Edison WSD recharged a net total of 251 hm³ (203,600 acre-feet) of water -- an annual average of 36 hm³ (29,100 acre-feet).

TABLE 10

GROUND WATER RECHARGE ROSEDALE-RIO BRAVO WATER STORAGE DISTRICT (in acre-feet)

Year	Sou Friant-Kern	rce of Suj	oply :Californi	a: Total
1.601		: River	: Aqueduct	
1962 1963 1964 1965 1966 1967 1968 1969 1970	9,900 19,700 0 8,600 5,400 13,000 0 0 0 8,400	1,400 64,900 15,300 57,600 15,500 73,300 24,400 82,300 21,900 8,000	3,900	11,300 84,600 15,300 66,200 20,900 86,300 24,400 82,300 25,800 16,400

^{1/} Through June 1971.

Arvin-Edison WSD's Sycamore spreading works includes a 1 600 000-m² (390-acre) plot on an alluvial fan of Sycamore Creek (T31S/R30E, MDB&M) and a nearby field of 30 wells. The Tejon spreading works is on Tejon Creek, about 10 km (6 miles) south of the Sycamore facility in T32S/R29E, MDB&M. It covers an area of 2 090 000 m² (516 acres) and has 20 wells.

Arvin-Edison WSD's wells deliver a minimum of 0.1 m³/s (4 cfs) from depths ranging from 140 to 170 metres (450 to 560 feet) below the pump base elevation. The wells range in depth from 229 to 329 metres (750 to 1,078 feet). A summary of Arvin-Edison WSD's percolation and withdrawal activity is shown in Table 11.

Future use of the Arvin-Edison WSD percolation facilities will vary with the amount of Friant-Kern Canal water deliveries to the sites. Arvin-Edison WSD's water service contract provides for delivery of up to 49 hm³ (40,000 acre-feet) per year of water on a firm supply basis and up to 386 hm³ (313,000 acre-feet) annually of Class II water.

It has been estimated that total annual deliveries to Arvin-Edison WSD will average 236 hm3 (191,000 acre-feet), ranging from 33 hm3 (27,000 acre-feet) in a dry year to a

^{2/} Calculated for 9.5 years.

TABLE 11

GROUND WATER RECHARGE
ARVIN-EDISON WATER STORAGE DISTRICT
(in acre-feet)

Reporting Year (March- February)	Percolated: Water:	Extracted Water	: Net : Ground Water : Storage : Change
1966-67 1967-68 1968-69 1969-70 1970-71 1971-72	41,400 63,700 5,500 107,800 28,000 44,200	0 0 11,400 400 100 100 75,000	41,400 63,700 -5,900 107,400 27,900 44,100 -75,000

^{1/} Includes projected amounts for period August 1972 through February 1973.

maximum of 435 hm³ (353,000 acre-feet) in a wet year. In years when the average 236-hm³ (191,000-acre-foot) delivery is made, approximately 101 hm³ (82,000 acre-feet) will be percolated, and the remaining 134 hm³ (109,000 acre-feet) will be delivered directly to the service area. On the average, about 86 hm³ (70,000 acre-feet) will be extracted each year from the ground water basin through the well fields to sustain service area deliveries.

West Kern County Water District

West Kern County Water District maintains a well field in Sections 21 and 28, T3OS/R25E, MDB&M, to meet its municipal and industrial needs. Extractions from the field have been classified as ground water exports in the model's terminology. Recharge operations near the well field were begun in 1965 when 7 400 000 m³ (6,000 acre-feet) of Kern River water was spread for that purpose. West Kern County WD spread 9 200 000 m³ (7,500 acre-feet) in 1966, 18 hm³ (14,400 acre-feet) in 1967, and 2 500 000 m³ (2,000 acre-feet) in 1968.

It is expected that all of West Kern County WD's annual entitlement (31 hm², or 25,000 acre-feet) from the California Aqueduct will be used for recharge of the ground water basin. The Taft area supply will be exported from this entitlement.

Recharge from Over-irrigation

Recharge of the ground water basin from overirrigation of agricultural land occurs in all districts overlying the ground water basin. In some areas, however, the presence of moisture-deficient soils and/or perched water conditions interrupts -- at least temporarily -- this deep percolation flow.

It is estimated that at least 26 to 32 percent of the water applied to crops passes through the root zone as deep percolation. With the import of more expensive water and the use of more efficient water management practices, it has been estimated that this percolation will be reduced to approximately 20 percent.

Leakage from surface transmission facilities has been classified as conveyance loss attributable to deep percolation and is considered a contribution to the ground water recharge inventory. These amounts (along with those of deep percolation resulting from irrigation) averaged 785 hm³ (636,700 acre-feet) per year during the base period. They are shown in Table 12.

TABLE 12

DEEP PERCOLATION TO GROUND WATER 1/

(in acre-feet)

Year	Irrigation	:	Conveyance Loss	:	Total
1958 1959 1960 1961 1962 1963 1964 1965	373,200 591,400 561,800 647,300 526,800 422,500 619,900 512,500 664,700		99,000 76,200 68,900 51,600 101,800 123,200 84,300 113,000 91,600		472,200 667,600 630,700 698,900 628,600 545,700 704,200 625,500 756,300
Average 1958–66	546,700		90,000		636,700

Data were taken from Computer Run No. 18. Agricultural deep percolation was computed by subtracting consumptive use and moisture-deficient soil requirements from agricultural demand.

Population of Model Area

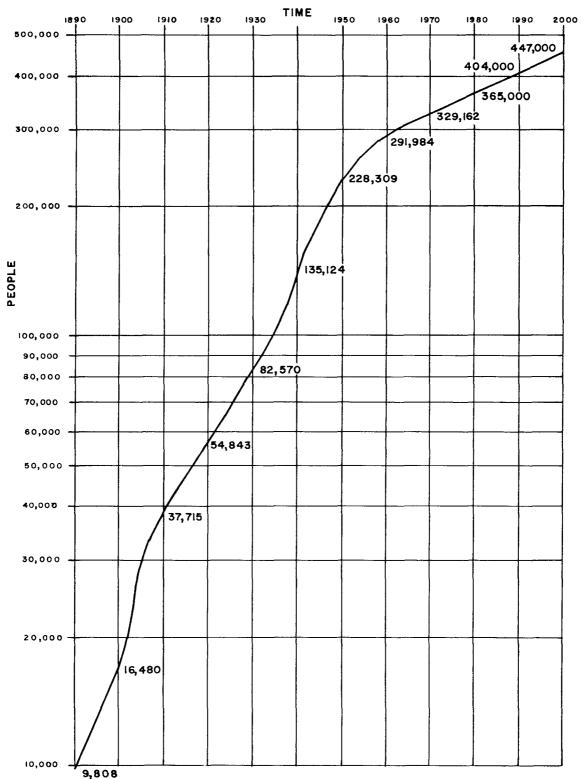
Kern County's population rose from 291,984 in 1960 to 329,162 in 1970 -- an annual increase of 3,718 over the ten-year period, a rate of about 1.3 percent per year. The urban Bakersfield area accounted for 25,418 people, or 68.5 percent of the total increase.

Population changes in the County as well as a population projection through the year 2000 are shown on Figure 4.

Assignment of Population to Nodes

Census tract data were assigned to ground water model system nodes in the urban Bakersfield area. It was then possible to determine the rate of change in population of each node from one census to the next. This information is tabulated in Table 29 (Appendix B).

The same procedure was used to establish nodal populations for the cities of Delano, McFarland, Wasco, Shafter, Buttonwillow, Weedpatch-Lamont, and Arvin in the County's ground water basin area. A straight-line projection of 1960 and 1970 data was made for all nodes involved to establish population trends for projections and for use during the base period.


The ground water model is programmed to total the population of appropriate nodes in each community to establish municipal populations from which water demands can be computed. Population input for the model work is shown in Table 30 (Appendix B). Future water demand projections will require the definition of nodal populations for the period in question.

The City of Taft lies outside the ground water basin and is not included in the tabulation shown in Table 30. Because it receives its water through the West Kern County Water District from wells within the model area, Taft's demand was considered exported ground water. The 1970 census shows the population of Taft and its suburbs to be 12,206, a decrease of 230 from the 1960 census. The industrial water demands of the Taft area are related to oil field activity rather than population and must therefore be considered independently when exports are projected.

Land Use in Model Area

Three land use or crop surveys of the Kern County ground water basin were used to establish a basis for projections of irrigated land use for the model study.

FIGURE 4
KERN COUNTY POPULATION PROJECTION

SOURCE: US CENSUS - FROM THE KERN COUNTY PLANNING DEPT. (1971)

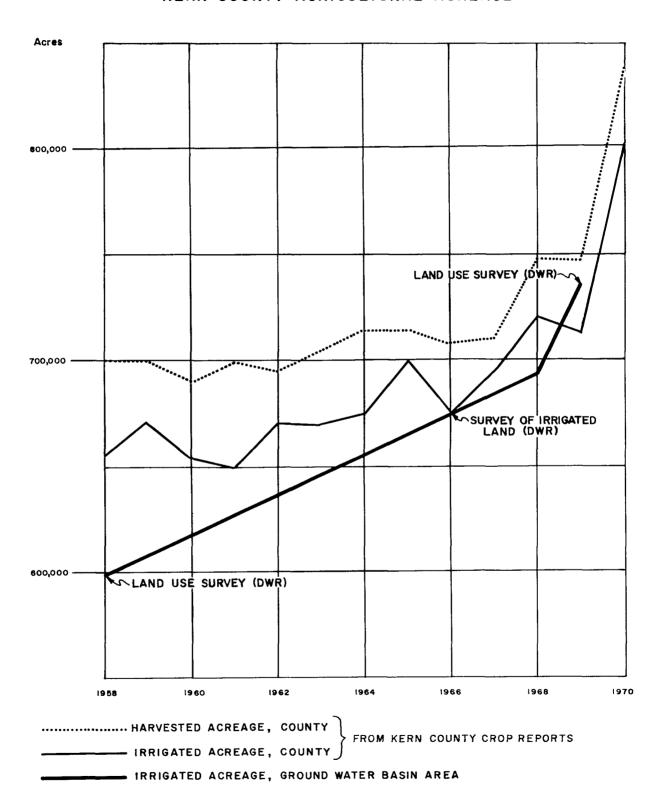
The surveys included (1) a 1958 land use survey conducted by the Department and involving the mapping of land use in the field on photographs; (2) a 1966 Department survey of changes in irrigated acreage, covering the same area as the 1958 survey; and (3) a complete Department land use survey conducted in 1969 and accomplished through interpretation of current aerial photography supplemented by field inspections.

Consumptive Use Calculations

The 1958 land use was examined in detail, and appropriate acreages were transferred to the model's nodal system. A weighted average of crop consumptive use was established for each node so that a unit consumptive use factor could be applied to the annual irrigated acres in future years to compute each nodal area's total consumptive use.

A straight-line projection of irrigated acreage was made from 1958 through 1966 to establish an estimate for the intervening years for use in model calculations.

The 1969 land use survey established a consumptive use pattern for the final years of the base period by providing details of individual crop information. A computer evaluation of crop survey information permitted rapid distribution of crop data to appropriate nodal areas.


Additional comparative agricultural information was obtained from annual agricultural crop reports prepared by the Kern County Department of Agriculture. These reports summarize reported crop acreages and list changes and trends; but since they cover the entire County and are restricted to input reported by various field representatives, interpretations of acreage distribution are necessary before the data can be applied to the County's ground water basin.

A graphic summary of all agricultural land use during the base period (extending through 1970) is offered on Figure 5. The same graph indicates the County's total number of harvested and irrigated acres.

Irrigated Land Projections

Projections of irrigated land use were made by the Department in an unpublished district report entitled "Economic Demand for Water -- Area I, Kern County-Tulare Lake Basin", dated July 1967. Estimates of irrigated land development for major crops are given in Table 31 (Appendix B) of this study.

FIGURE 5
KERN COUNTY AGRICULTURAL ACREAGE

A 1956 Kern County land classification study conducted by the Department identified 654 800 hectares (1,618,000 acres) of land suitable for irrigated crop production. Some of this acreage has limited use, and because of high water tables and excessive salt concentrations, a large portion of this land must ultimately be leached and drained if it is to remain productive.

Table 13 lists potential land uses and estimates the maximum land available for irrigated agricultural development after 2020. Without creation of a long-term overdraft of the ground water basin, the ideal maximum agricultural acreage is limited by the available water supply.

TABLE 13

ULTIMATE IRRIGABLE LANDS
GROUND WATER BASIN AREA OF KERN COUNTY

(in thousands of acres)

1956 Survey	: Non- : agricultural : Lands	Agricultural Lands
Nonirrigable Urban use Suitable for all crops Limited use	32.4 85.1	640.0 978.2
Totals	117.5	1,618.2
1970 estimated area with present and future drainage problems		200.0
Ultimate total lands without drainage plan		1,418.8

It is estimated that the combined water supply from the California Aqueduct, the Friant-Kern Canal, ground water yield equal to natural recharge, and effective precipitation will total 2 995 hm³ (2,428,000 acre-feet) in 1990. After subtracting 18 percent as the amount required to maintain a salt balance in the area, a net 1990 water supply of 2 456 hm³ (1,991,000 acre-feet) is available for use.

With a consumptive use of 0.8 $\rm m^3/m^2$ (2.6 acre-feet per acre), the calculation yields an ideal maximum irrigated acreage of 311 300 ha (769,200 acres).

Curiously, the computed ideal 1990 irrigated agricultural land development is approximately 24 000 ha (60,000 acres) less than the 1974 irrigated land development in the 335 000-ha (829,000-acre) nodal area, as calculated from NASA U-2 aerial photographs. The same source indicates an irrigated acreage of 372 000 ha (920,000 acres) for the San Joaquin Valley portion of the County.

It should be noted, however, that yield and salt balance figures used in these calculations are only estimates and are subject to change as more information is gathered.

Irrigation Efficiency

Irrigation efficiency is defined here as the relationship between evapotranspiration and applied water. At an irrigation efficiency of 100 percent, no water is lost (either to deep percolation or surface runoff), since the entire amount of applied water is used consumptively. This situation would permit salts to accumulate in the root zone, resulting in reduced crop yields. Hence, a leaching factor is added to the required consumptive use supply in planning the total water demand.

This practical approach to land management was considered when ground water model factors were developed. A study conducted in California by Iowa State University (1970) revealed a direct relationship between crop type and irrigation efficiency employed. The results of the study are given in Table 14.

TABLE 14

ASSUMED IRRIGATION EFFICIENCIES
OF VARIOUS CROPS

Crop :	Irrigation Efficiency (percent)
Alfalfa Clover Pasture Grains and silage Cotton Vegetable Rice Sugar beets Citrus and nuts Subtropical fruits and vines	75 60 70 70 70 65 65 65 75

The irrigation efficiencies given in Table 14 were applied to crops grown in the nodal areas, and a weighted average irrigation efficiency was derived for each area. During a ground water simulation run, these factors were used to determine the amount of deep percolation resulting from applied irrigation water. They can also be used to calculate the total water demand for irrigated acreage.

Consumptive Use of Water

Water used consumptively in agriculture includes water consumed by vegetative growth and associated evaporation—the process normally termed evapotranspiration. It also includes water evaporated from adjacent soil during the evapotranspiration process.

Urban consumptive use calculations include the amount of water consumed (or evaporated) and thereby removed from the total water inventory. It is customary to relate the total community consumptive use to population and to define a unit of consumptive use per capita.

Recreational use includes all water consumed in the operation of recreational facilities -- primarily waterfowl hunting sections of the study area.

Vegetative Consumptive Use

Unit consumptive use values for all agricultural land covered in this study were established by the Department of Water Resources through evaporative demand and crop studies conducted in the Tulare Lake Basin.

Eight crop categories were employed for this study, and it was noted that water demands for individual crops differed considerably within the field, truck, and berry crop divisions. This factor was considered when weighted average consumptive uses were calculated for each nodal area.

Table 15 lists agricultural crops both individually and by types, and provides a unit consumptive use figure for each entry.

In 1958, crop consumptive use data were converted to total water requirements for each nodal area of the ground water model network. This was accomplished by multiplying each crop's net acreage (as recorded in the Department's 1958 land use survey) by the appropriate consumptive use figure. The sum of the individual crop requirements is the total agricultural consumptive use for each nodal area.

TABLE 15

AGRICULTURAL UNIT CONSUMPTIVE USE (in acre-feet per acre)

Subtropical Fruits	2.52	Rice	4.55
Grapefruit Lemons Oranges Dates		Field Crops Cotton	2 67
Avocados		Safflower	2.53 2.93
Olives Miscellaneous		Flax	
Titscertaneous		Hops Sugar beets Corn	2.67 2.26
Deciduous Fruits and Nuts	3 . 50	Grain sorghum (milo) Sudan	2.13
Apples		Castor beans	2.90
Apricots Cherries		Beans (dry) Miscellaneous	1.83 2.60
Peaches and nectarines		rinscerraneous	2.60
Pears Plums		Truck and Berry Crops	
Prunes			
Figs Miscellaneous or mixed		Artichokes	
Almonds		Asparagus Beans (green)	
Walnuts		Carrots	2.10
		Celery	
Grain and Hay Crops	1.12	Lettuce Melons	2.10
didin did im, oropo	± ♥ ± €	Onions and garlic	1.93
Barley		Peas	
Wheat Oats		Potatoes	1.77
Miscellaneous and mixed		Sweet potatoes Spinach	
		Tomatoes	2.10
T	7.00	Flowers and nursery	
Forage Crops	3.90	Miscellaneous truck Bushberries	2.00
Alfalfa		Strawberries	
Clover		Peppers	
Mixed			
Vineyard	2.10		
· Lie Jack	_• _ •		

⁻⁻ Crops not grown in study area or data not available.

In each node, the total consumptive use requirement was divided by the gross 1958 irrigated acreage to develop nodal consumptive use factors applicable to gross irrigated acreage during the modeling process.

Consumptive use requirements for 1966 were developed by applying the consumptive uses of 1958 to acreage identified by the Department's 1966 irrigated land survey.

In 1969, a detailed land use survey of the model area was completed by the Department. Through use of a computer, data were converted into a nodal breakdown of individual crops and total irrigated acreage within each node. New nodal unit consumptive use factors were calculated from this information, and the results were compared with those established in 1966. Adjustments were made in the use factors where discrepancies were obvious.

Finally, the revised factors were made part of the data base used for the digital computer simulation modeling. As changes occur in the total irrigated land, the computer calculates new consumptive use requirements for the entire model.

Recreational Consumptive Use

Studies revealed that a unit factor of 0.9 m³/m² (3 acre-feet per acre) represents the water (used to grow feed or ponded to attract migratory waterfowl) lost in operation of duck hunters' clubs in the area.

Municipal and Industrial Consumptive Use

A local survey was conducted to determine the percentage of total water demand used consumptively by municipal and industrial concerns located within the study area. It was found that the average consumptive use requirements in the urban Bakersfield area changed from 63 percent of the total demand in the 1960-62 period to 62 percent of the demand in 1966.

The investigation also revealed that, for nodes associated with other communities, consumptive use factors differed slightly and were generally less than those assigned to the Bakersfield area.

Since the model's total municipal and industrial consumptive water use was defined as a percentage of the total municipal and domestic water demand, an investigation of historical water deliveries in urban areas was undertaken. It was found that water demand calculated on a per capita basis varied from node to node (as well as year to year) in the urban

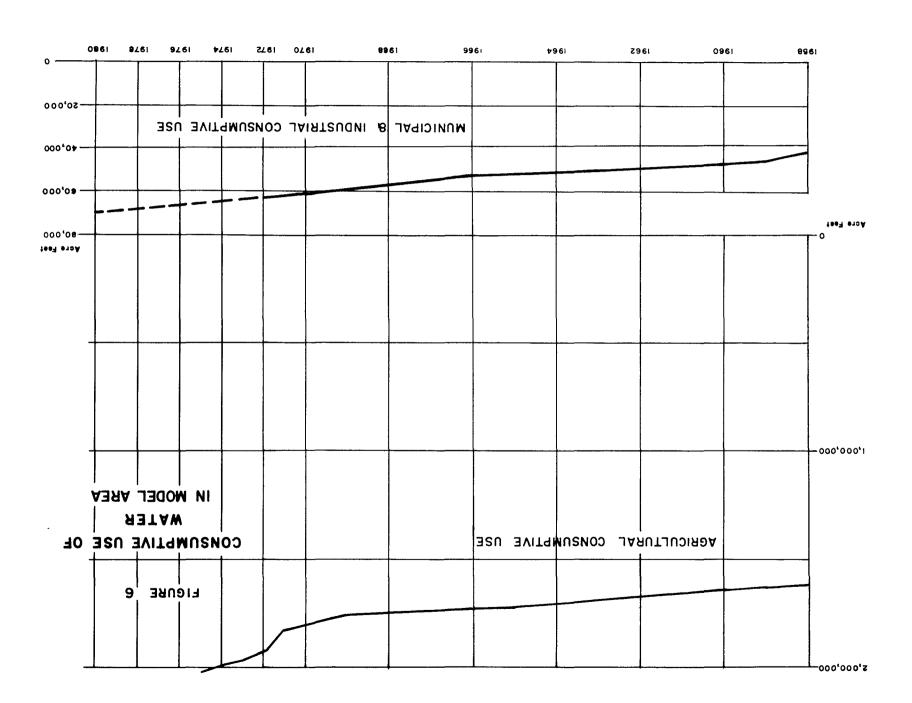
Bakersfield area, but when the area was taken as a whole the per capita demand changed only slightly. This finding justified the assumption that municipal and industrial use was directly related to population.

From 1960 to 1962, the annual per capita Bakersfield demand was 520 m³ (0.42 acre-foot), and by 1966 it rose to 530 m³ (0.43 acre-foot). This figure is slightly higher than the Kern County average of 488 m³ (0.396 acre-foot) set forth in the August 1968 Department of Water Resources Bulletin No. 166-1, "Municipal and Industrial Water Uses". This bulletin also estimates a per capita use factor of 490 m³ (0.40 acre-feet) for the Fresno area. The Kern County figure is probably higher than average because of increased use of water for lawn irrigation and extensive use of evaporative coolers dependent on low-cost, unmetered water.

Municipal and industrial use projections are directly related to urban population projections. This projection through the base period (and for future use) was accomplished by correlating federal census tracts with nodal boundaries. Reported populations for the years 1960 and 1970 were then assigned to each nodal area.

Straight-line projections of these data established the population trend through the 1958-66 base period and formed the basis for future projections.

The information was modified by using Kern County Planning Commission projections for 1980, 1990, and 2000. The final yearly estimates were tabulated for computer use to determine the municipal and industrial water demands on a nodal and community basis.


A graphic comparison of the agricultural and municipal consumptive use trends is provided on Figure 6.

Ground Water Extractions for Export

An annual average of nearly 18 hm³ (15,000 acre-feet) of water was extracted for export from the study area's ground water basin during the nine-year base period. The exports are indicated in Table 32 (Appendix B).

Alpaugh Irrigation District

Alpaugh Irrigation District has diverted water through unlined canals and associated structures for irrigation use in Tulare County. Calculated transmission losses for the base period were considered as surface water supply in the model area. Total extractions were recorded in the net basin inflow

gen group tig the tite the term of the control bear of the control bearing the control by the control of the control of

section of the ground water model, but only water actually leaving the County was classified as exported ground water.

The average district extraction for the base period was $18~\rm{hm}^3$ (15,000 acre-feet), while losses totaled 4 900 000 m³ (4,000 acre-feet) and the average annual export amounted to 14 hm³ (11,000 acre-feet).

West Kern County Water District

West Kern County Water District pumps water from a well field near Tupman (Sections 21 and 28, T3OS/R25E, MDB&M) and conveys it to the Taft area for municipal use and to adjacent oil fields for industrial use. Water is occasionally diverted from this system for agricultural use outside the study area, but such use represents only a small portion of the total export.

Average annual exports by West Kern County WD during the base period amounted to 3 800 000 m³ (3,100 acre-feet). West Kern County WD plans to use its future California Aqueduct entitlement for a spreading recharge operation that will replace water exported from the basin.

Lost Hills Water Company

Lost Hills Water Company pumps ground water from wells in Section 33, T26S/R23E, MDB&M, for urban use at Lost Hills and for industrial use in nearby oil fields. (Water used in oil field operations is considered exported water.) Urban use during the base period averaged 20 000 m³ (16 acre-feet) per year, and the annual export averaged 104 000 m³ (84 acre-feet).

Belridge Oil Company

Belridge Oil Company pumps from a well field near Spicer City (Section 10, T28S/R23E, MDB&M) to supply water for oil field operations at the North Belridge Oil Field outside the study area. Extractions during the base period averaged 740 000 m³ (600 acre-feet) per year.

Hydrologic Balance

The final hydrologic balance determined for the base period during model verification is presented in Table 16. During model calibration, many factors were changed so that computed ground water levels would simulate actual water levels at nodal points. If a supply item was reduced during calibration, there was a corresponding increase in another supply item or a decrease in an item of disposal.

TABLE 16 MODEL AREA HYDROLOGIC BALANCE (in thousands of acre-feet)

Supply and Disposal	1958	: 1959	: 1960	: 1961	1962	: 1963	: 1964	1965	. 1966	.Average
Supply										
Kern River	1,066	361	336	190	660	728	373	677	479	541
Minor streams	72	4	18	16	25	21	21	30	38	27
Friant-Kern Canal	237	172	187	140	238	255	201	267	239	215
Oil field waste water	5	5	5	5	5	5	6	6	7	5
Effective precipitation	236	80	105	50	147	227	92	179	68	132
Subsidence water	80	114	111	89	80	65	110	56	117	91
Net subsurface inflow	204	235	230	245	228	226	240	234	253	233
Change in storage		<u>764</u>	<u>757</u>	1,026	40	280	<u>789</u>	392	676	<u>566</u>
Total supply	1,900	1,735	1,749	1,761	1,790	1,807	1,832	1,841	1,877	1,810
Disposal										
Evapotranspiration										
Agriculture	1,619	1,627	1,644	1,660	1,677	1,696	1,717	1,724	1,754	1,680
Municipal and industrial	46	47	48	49	50	51	51	52	53	49
Evaporation	32	12	11	6	21	23	12	21	16	17
Loss to moisture-deficient soils	19	29	27	31	25	19	29	24	30	26
Export	12	20	19	15	17	18	23	20	24	19
Change in storage	172									19
Total disposal	1,900	1,735	1,749	1,761	1,790	1,807	1,832	1,841	1,877	1,810

The hydrologic balance indicates an average annual overdraft of 789 hm² (640,000 acre-feet) during the base period. Precipitation on the valley floor approximated the 50-year mean, and Kern River runoff at First Point was about 77 percent of the 73-year mean.

CHAPTER IV. GEOLOGIC FACTORS IN GROUND WATER STORAGE AND MOVEMENT

The Kern County ground water reservoir is a structural trough bounded on three sides by mountain ranges and filled with unconsolidated sediments extending northward through the San Joaquin Valley. The limits of the area underlain by unconsolidated sediments, which contain the most important water-producing elements in the County, are shown in Plate 6. In addition, water is also obtained from semiconsolidated formations such as the Santa Margarita along the northeastern edge of the area.

The valley sediments can store and transmit much larger quantities of water than the hard, impervious rocks beneath them and in the adjacent mountain ranges. The area of usable ground water is not identical with the area of unconsolidated valley sediments, however, because some sediments either contain little or no water or contain water unfit for most domestic and agricultural purposes.

This report discusses only the most important geologic factors affecting the occurrence and movement of ground water in the valley portion of the County. These factors are confining layers, vertical geologic barriers, transmissivity, conductivity, specific yield, subsidence, and moisturedeficient soils. The geology of the ground water basin has been reported in more detail in several U. S. Geological Survey publications (Hilton, et al, 1963; Wood and Dale, 1964; Wood and Davis, 1959; and Dale, et al, 1966).

The model area was defined by factors such as limits of ground water use (as controlled by available quantity and quality), boundaries to flow (formed by faults, folds, and mountain ranges), and data availability. The sediments in the model area have variable water storage and transmission characteristics — a result of variations in their size and distribution when they were created.

Clay Layers

In the unconsolidated sediments three confining clay layers — identified as the A, C, and E clays — were mapped by Croft in Kern County (1972). The E clay, which Croft correlates with the Corcoran clay defined by Davis (1959) in the northern part of the County, is important because it is an effective confining layer extending over most of the model area. In this study, it was found that the confined area was more extensive than the area of Croft's E clay.

Geologic data alone were insufficient to identify the boundaries of the E clay. In part of the model, it was necessary to define two water-bearing layers to reproduce the observed water levels. With two layers, each layer can have independent rates and directions of ground water movement (i.e., water can move southward in one layer and westward in the other). The area, modeled as two aquifers separated by a clay layer, is shown in Plate 7.

Only part of the model is a two-layer system. The Edison, White Wolf, and Forebay subbasins were modeled as a single, unconfined aquifer. The subbasins are shown in Plate 6. However, the Santa Margarita formation, which is the principal aquifer in the eastern part of the forebay along Highway 65, appears to be confined.

The A and C clays were not included in the model because data were insufficient to define their effects and because their omission simplified the model construction. Croft mapped the C clay at depths between 46 and 76 metres (150 and 250 feet) in the northwestern part of the County from Spicer City to the county line. He also mapped the A clay at a depth of 3 to 18 metres (10 to 60 feet) in a more limited area north of Spicer City and beneath the Buena Vista and Kern lakebeds. There are indications that both are effective confining layers, the A clay perhaps functioning mostly to cause a higher water table and consequent drainage problems. Ground water storage above the A and C clays is small and has probably changed only slightly during the calibration period. These layers cover less area than the E clay, and their omission caused no apparent problem in the model operation.

Vertical Geologic Barriers

Barriers that impede horizontal ground water movement are of four types:

- Faults, such as White Wolf and Edison.
- 2. Folds, such as Elk Hills and Buena Vista Hills.
- 3. Angular unconformities, such as the one extending southward from Lost Hills.
- 4. Contacts with the crystalline and consolidated sedimentary rocks in adjacent mountains.

Faults

Three faults -- Springs, White Wolf, and Edison -- shown in Plate 6 are known to be barriers to horizontal ground water movement.

The Springs fault is outside the modeled area.

The White Wolf fault separates the main ground water basin from the White Wolf subbasin to the southeast. Water levels in the White Wolf subbasin have declined more rapidly than the unconfined water levels in the main ground water basin, and by 1973 the subbasin head was more than 30 metres (100 feet) lower than the unconfined water level in the main basin.

The Edison fault creates another subbasin consisting of Nodes 116 to 118 east of Bakersfield. Water levels in this subbasin are 55 to 131 metres (180 to 430 feet) higher than those in the main basin, with the maximum water level difference at the east end of the fault. The presumed location of the west end of the fault was moved, and the node shapes were changed during model calibration.

The recently described Pond-Poso Creek fault (Park, undated) was unknown to the Department during the period of model calibration (January 1971 to May 1973); but in order to match historical ground water levels, it was necessary to reduce transmissivity along the alignment of the fault from Highway 99 to the Tulare County line. The fault restricts the southwest flow of water in both aquifers.

Other possible fault barriers along the east side of the model area north of Bakersfield are suggested by two types of data -- linear topographic lows transverse to the drainage direction and steep water level gradients.

The faults, shown in Plate 3 and on the geologic maps of Hilton (1963) and Park (undated), are the Premier and Hodgeman Ranch faults. The effectiveness of the Premier fault as a barrier is suggested by water level data collected while this study was in progress. The effect of the Hodgeman Ranch fault is uncertain.

Nearly all of the water level data for the model area north of Poso Creek have been collected since 1969, after the January 1958-December 1966 data period used to calibrate the model. The data seem to indicate that there is little hydraulic continuity between water in the Santa Margarita formation and in the main ground water basin.

Folds

Folds, particularly those with steeply inclined layers, also impede horizontal movement of ground water. Elk Hills, Buena Vista Hills, Lost Hills, and Kettleman Hills — all located along the western boundary of the model — were all assumed to be barriers to subsurface flows in both layers of

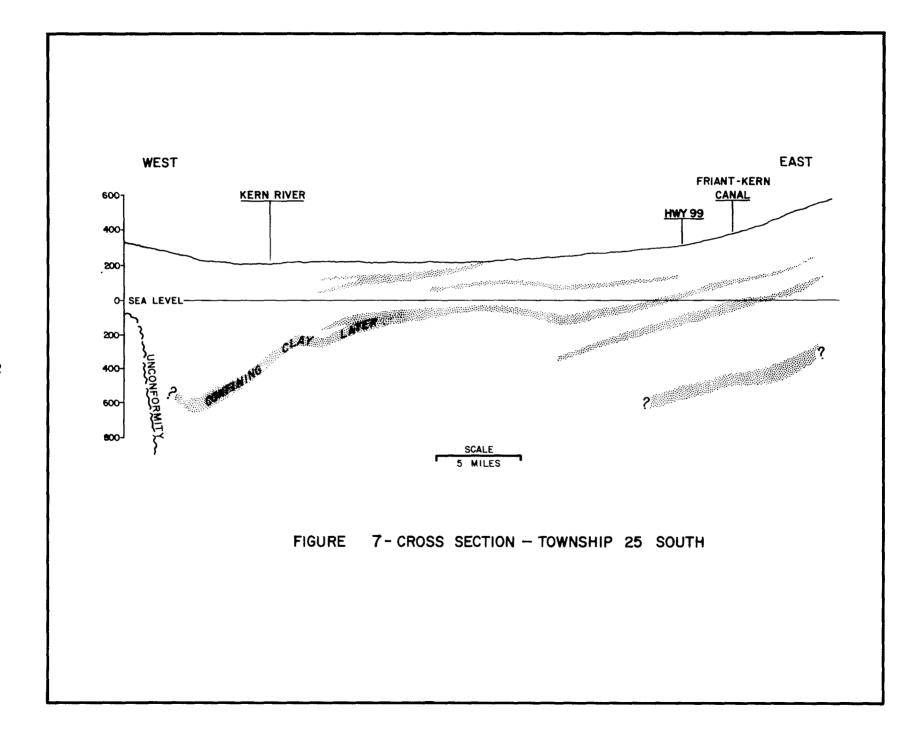
the model. Water levels adjacent to these boundaries were reproduced reasonably well in the model under this assumption. Buttonwillow and Semitropic ridges, located within the model area, also noticeably retard subsurface flow. Folds that affect ground water flow in the model are shown in Plate 3.

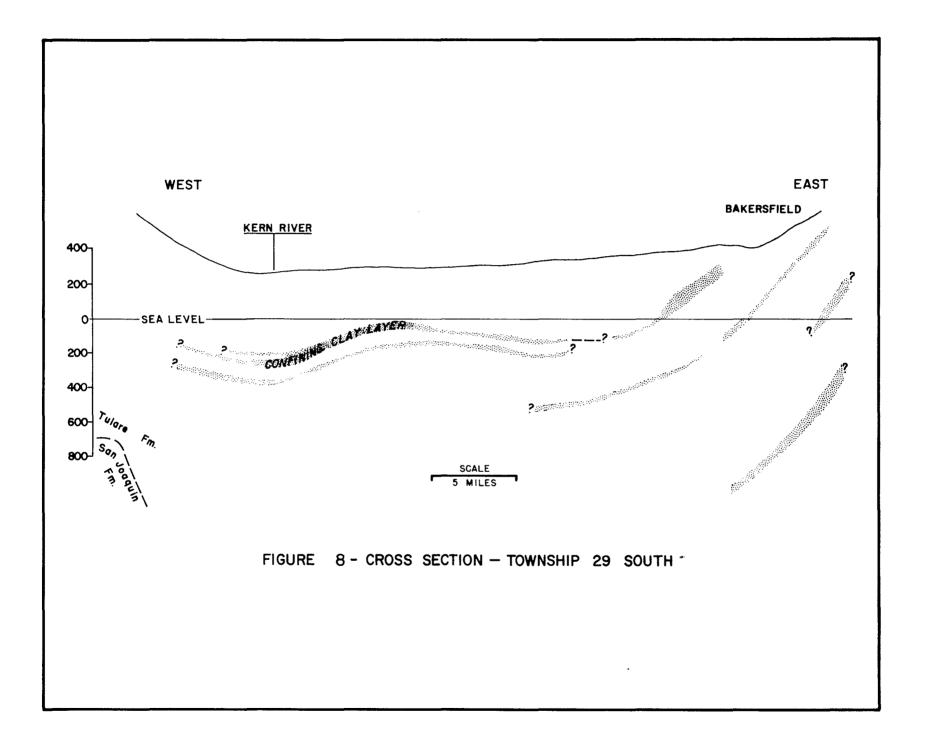
Angular Unconformities

An angular unconformity formed by sloping layers of older, more consolidated sediments underlies the younger, relatively flat-lying sediments at depths of a few hundred feet along the northwest boundary of the model area from Elk Hills to Lost Hills and from Lost Hills to Kettleman Hills.

It is uncertain from available data whether this buried ledge was formed by folding, faulting, or a combination of the two, but it restricts subsurface flow along a portion of the boundary.

Figure 7, an east-to-west cross-section through Township 25 south, MDB&M (on an alignment shown in Plate 6), shows the major clay-confining layer trending toward the older sloping sediments on the west. A similar situation exists in Township 27 south, MDB&M. Both the clay and the sediments below the unconformity have low hydraulic conductivities in this area, and where there is little or no gap between them, subsurface flow across the western boundary into the model's lower aquifer is restricted.


In contrast, Figure 8 shows in the east-to-west cross-section through Township 29 south, MDB&M (along an alignment shown in Plate 6), a much wider gap between the trend of the main confining clay layers and the barrier formed by the older sediments. As a result, the subsurface flow is larger in that area.


Similar data were obtained for the Township 28 south cross-section, showing that in both these townships the western boundary is more open to subsurface flow than farther north.

Rocks

Crystalline rocks, older inclined sandstone and shale strata, and faults of the San Emigdio and Tehachapi mountains form a barrier that defines the limit of the ground water basin along most of the southern and southwestern boundaries of the model area.

والمراجع والمراجع والمراجع والمتعاصين والمتعاصل

Transmissivity

Transmissivity is defined as the rate at which water is transmitted through a unit width of an aquifer under a unit hydraulic gradient. Transmissivities were estimated from a few aquifer tests (McClelland, 1964) and from average specific yields.

The thickness of the upper layer above the E clay ranges from 60 to 270 metres (200 to 910 feet), with more than 90 percent of the area between 120 to 180 metres (400 and 600 feet) thick.

Because there is no clay layer to define the thickness of the water-conducting sediments in the lower and single aquifers, the fresh water base is used as a lower limit. The fresh water base may be partly controlled by physical boundaries such as layering and by a dynamic, hydraulically maintained interface. The fresh water base was defined by electric log inspection. The estimated cutoff point is water with a specific conductance of less than 3 000 micromhos per centimetre, which represents about 2 000 mg/l total dissolved solids. The method, which is of limited accuracy, is described in Page (1973). The reference also contains a map showing the base of fresh water.

This assumption resulted in high estimates of transmissivity, and it now appears that the depth of deep wells would have been a better guide to the present ground water circulation pattern. It also seems that the transmissivity of the older sediments was overestimated.

Conductivity

For the purposes of this report, conductivity is defined as the transmissivity multiplied by the width of the flow path and divided by the length of the flow path between nodes. Conductivity is the combination of all the constant values required to describe the internodal flow path to the computer. When multiplied by the hydraulic head difference between nodes — the variable computed by the model — the conductivity yields the subsurface flow rate in acre-feet per year from node to node.

Many initial conductivity estimates were changed repeatedly during the calibration of the model. The changes were smaller in the upper layer, where the E clay more accurately defined the thickness of the aquifer. Conductivity values used in Operational Run A are shown in Tables 35, 36, and 37 (Appendix C).

Interlayer Conductivities

Another set of conductivities was needed to simulate flow between the upper and lower water-bearing layers. Vertical conductivity differs from horizontal conductivity in that the distances between nodes is the thickness of the confining clay. Vertical flow occurs through gravel packs around well casings that penetrate the clay layer, through composite wells that are perforated in both water-bearing layers, and through the clay layer itself. In most areas where ground water was developed, flow through the composite wells contributed the largest component of interlayer flows. A rough estimate was made of the flow through clay, gravel packs, and wells perforated in both aquifers, and the total of these flow components was used to derive initial vertical conductivity estimates.

Ground Water Mounds

The ability of the model to reproduce subsurface flow rates and water levels along the ground water mounds below the Kern River and Poso Creek is not completely satisfactory. No amount of change in conductivity or other model parameters can remedy this problem without a change in the shape of the nodes. A modification recommended by Dr. David Kleinecke is shown in Plate 8. The new flow paths would be more in line with the direction of gradient and highest conductivity.

Specific Yield

Specific yield is defined as the percentage of soil volume that will store and yield water by gravity. Information forming the basis for assigning specific yield values was taken from Table A, Attachment No. 2, Department of Water Resources Bulletin No. 104, "Planned Utilization of the Ground Water Basins of the Coastal Plain of Los Angeles County", Appendix A, "Ground Water Geology", June 1961.

Specific yield values for sand and silt given in Bulletin No. 104 are higher than those used previously and are supported by recent work (Johnson, 1967) that suggests older values are too low.

The average specific yield for each nodal area was determined by estimating the proportions of gravel, sand, silt, and clay from selected drillers logs. The highest specific yields -- 26 percent -- were assigned to sand and gravel. Clay had the lowest yield (about 3 percent). Values for other materials are indicated in Bulletin No. 104 (reproduced in Table 39, Appendix C).

Initial average specific yield for the nodes ranged from 5.0 to 16.1 percent, and during model calibration the values were adjusted to final figures ranging from 8.0 to 19.5 percent. The ratio of final value to initial value ranged from 0.75 to 2.00 and averaged 1.28. The final values used in Operational Run A are given in Table 35 (Appendix C).

To maintain an appropriate hydrologic balance in the model, increased storage yield (caused by increases in specific yields) was offset by both reduced subsurface inflow and increased consumptive use by crops. The distribution of final specific yield values by 2-percent increments is shown in Plate 9.

When the specific yield is multiplied by the area in acres, the result is acre-feet of storage per foot of change in elevation of the water table in the sediments. Storage amounts for the unconfined nodes (shown on Plate 7) were added to obtain the per foot storage capacity of the unconfined aquifer for each subarea (shown in Table 17).

TABLE 17
STORAGE CAPACITY
UNCONFINED NODAL AREAS

Subarea	:	Storage per Foot of Depth in Unconfined Aquifers (acre-feet)
Edison White Wolf Forebay Upper Aquifer Total (rounded)		2,000 6,500 22,300 127,000

In the unconfined aquifer, a reduction in water level in a well represents a change in the saturated material level and results in a consequent drainage of water from the pores of the material.

A different hydrologic situation is presented by the confined aquifer where, if water pressure remains above the base of the confining layer, a measured water level change in a well tapping the confined aquifer represents a change in pressure in the aquifer.

The confined aquifer is compressible, as is, to a small degree, the water it contains. When water is removed, pressure is reduced and the system compresses elastically.

The volume of water an aquifer releases through this mechanism per unit surface area of the aquifer per unit change in head is defined as the storage coefficient, a dimensionless number.

For the confined aquifer, then, the storage coefficient is related to the ability of the aquifer system to deform elastically. As measured by a water level difference in a well tapping only that aquifer, the coefficient is very small compared to that of the unconfined aquifer and, in the model, ranged from 0.03 to 0.12 percent per unit of head change. Values used in Operational Run A are shown in Table 34 (Appendix C). (The same elastic effect operates in the unconfined aquifer; but compared to the result of dewatering, the storage contribution from deformation is considered negligible.)

As a result of the confined aquifer's low storage coefficient, the storage change per foot of water level change in the entire lower aquifer (which has the same area as the upper aquifer) is just 567 000 m³ (460 acre-feet), or approximately .33 percent of the upper aquifer's capacity.

By comparing storage change in the two types of aquifers, the above analysis ignores subsidence. Subsidence promotes a different type of yield in that the void space occupied by the water is permanently reduced by inelastic deformation. As a result, storage space is permanently lost. Most of this permanent storage change, however, probably occurs in the fine-grained sediments of the confined aquifer and does not affect the coarser sands essential to ground water movement and to well yields. The storage change due to subsidence is discussed in the following section.

Due to the great differences between the confined and unconfined aquifers' storage coefficients, it is vital to know whether a well's water level represents a water table, a confined aquifer pressure surface, or some combination of the two. Calculations of storage changes from unknown or improperly classified water levels can result in incorrect ground water storage values. Contours drawn on the basis of this information can be misleading as to the direction of ground water movement and cannot be used as a measure of subsidence stress.

Subsidence

Most subsidence occurs in the aquifer's confined lower layer since a pressure change there promotes compressive stress that is greater than in the unconfined zone. Released from storage by subsidence, water in fine-grained sediments contributed more than 1 430 hm³ (1,160,000 acre-feet) to the Kern County supply during the 15-year period between January 1958 and January 1972. The mechanics of subsidence are discussed in detail by Lofgren (1969), and the average subsidence for each nodal area between 1958 and 1972 is shown in Tables 33 and 34 (Appendix C). Contours of equal subsidence are presented in Plate 10.

Subsidence can be measured by placing an anchor in a bore hole and gaging compaction of sediments between the ground surface and the anchor. Two or more bore holes, with anchors at different depths, are used to determine which depth intervals are experiencing subsidence. In the two-layer area, nearly all subsidence occurs in the lower layer.

Another method of measuring subsidence is by determining the elevation changes in a network of benchmarks over a period of years. Contours of elevation changes are then drawn, and the area's subsidence volume is computed for each time period.

Benchmarks are located at all bore hole compaction recorders so that total subsidence can be compared to measured compaction to determine if subsidence is occurring below the interval measured by the deepest recorder.

In deep aquifers below the water table, subsidence reduces the pore space in silts and clays — squeezing out water contained in the pores. This change in storage occurs in addition to ground water level fluctuations. Since the reduction in pore space equals the amount of water forced out, the amount of water obtained is assumed to equal the volume of subsidence measured by resurveying the surface benchmarks.

Subsidence data are collected by the U. S. Geological Survey in cooperation with the Department. The two subsidence areas of concern are the Tulare-Wasco area, affecting the north part of the model, and the Arvin-Maricopa area, affecting the south part of the model. Subsidence in the Tulare-Wasco area (through 1962) is described by Lofgren and Klausing (1969). Lofgren (1975) provides similar information on the Arvin-Maricopa area through 1970. Poland, et al (1975), reviews all San Joaquin Valley subsidence and extends the Tulare-Wasco area information through 1972.

Subsidence volumes were determined from changes in benchmark elevations measured in a 1965 survey of the Arvin-Maricopa area and from information collected in surveys of both areas in 1957, 1959, 1962, and 1970. Surveying is always done in the winter (assumed to be January of the above years) when subsidence has ceased or is taking place at a minimal rate.

The volumes of subsidence water, measured for two-to eight-year periods, were divided into annual amounts for use in the model. The basis for the annual portions were the continuous compaction records and monthly water level measurements. For the Arvin-Maricopa area, two recorders with continuous records from 1963 were employed — one in Section 20, T32S/R28E, MDB&M, measuring the O-to-300-metre (970-foot) depth interval; the other located in Section 3, T11N/R21W, SBB&M, measuring the O-to-450-metre (1,480-foot) depth interval.

Since 1959, the Tulare-Wasco area data have been kept by one recorder located in Section 34, T24S/R26E, MDB&M, measuring the O-to-670-metre (2,200-foot) interval, and two recorders in Section 16, T23S/R25E, MDB&M, measuring the O-to-230-metre (760-foot) and the O-to-130-metre (430-foot) intervals. The two recorders at the latter site (near Pixley) are the Valley's most accurate, and their graphic records (published as Figure 70 in Poland, et al, 1975) are reproduced here in Figure 9. The figure also shows the subsidence at Benchmark Q945 at the recorder site in Section 16.

The figure illustrates the seasonal variation in compaction rates and reflects the difference in annual compaction between wet and dry years. In several wet years, the annual subsidence is approximately 0.03 metre (0.1 foot), but in several dry years it is about 0.15 metre (0.5 foot). The annual compaction rates (from Table 6 of the same reference) are reproduced in Table 18.

After 11 model calibration runs, the initial annual subsidence distribution was adjusted to improve agreement between measured and computed ground water elevations. Nearly all adjustments prompted a shift of subsidence water yield from dry to wet years. The annual distribution of subsidence water used in Run 12 and succeeding runs is shown in Table 19.

Extraction rates in the lower aquifer must be balanced by subsurface inflow rates and rates of change in storage — including subsidence. In the first nine years of the calibration period for which data were tabulated, most of the water pumped from the lower layer came from subsurface flow from the overlying nodes (56 percent) and the forebay (19 percent). Although subsidence accounted for 20 times more water than elastic storage, it represented just 12 percent of the total water pumped from confined nodes.

SAN JOAQUIN VALLEY, CALIFORNIA

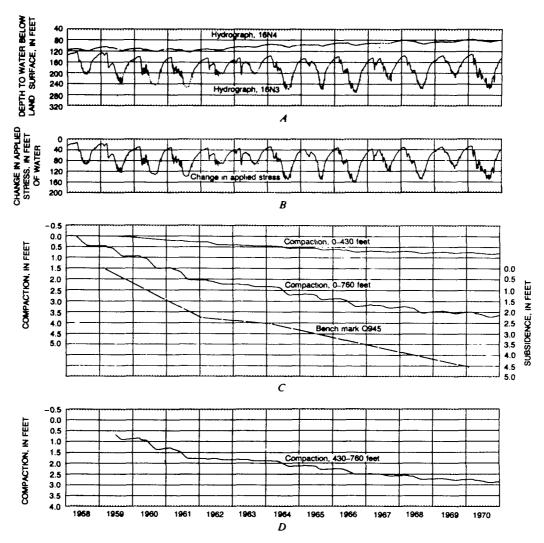


FIGURE 9-WATER LEVEL AND COMPACTION RECORDS FROM RECORDERS NEAR PIXLEY (T23S-R25E SEC. 16 N. M.D.B.8 M.)

	: Anchor : Depth	: Depth	: Start :	: tart : Year									Total				
	: When :Installed : (feet)	: Interval : (feet)	: of : Record!	1958	1959	1960	1961	1962		1964 :	1965 :	1966	1967	1968 :	1969	1970	Measured Compaction (feet)
																<i>~</i> ·	
						Arv	in-Mari	.copa Ar	ea								
328/28E-20Q1	970	0- 970	4/11/63						0.192	0.365	0.178	0.255	0.219	0.124	0.124	0.095	1.552
12N/21W-34Q1	810	0- 810	6/02/60			0.207	0.326	0.271	.209	.186	.2 6 6	.197	.130	.014	.186	.153	2.145
11N/21W-03B1	~-	810-1,480	4/12/63						.188	.261	.135	.229	.184	. 344	.152	.149	1.642
11M/21W-03B1	1,480	0-1,480	4/12/63						.326	. 447	.401	.426	.314	.358	.338	.302	2.912
						T	lare-W	sco Are	<u>:a</u>								
238/25E-16N4	250	0- 250	6/24/59		0.005	.024	.024	.008	.007	.022	.009	.001	0	.003	002	0	.101
238/25E-16 N 3	430	250- 430	6/24/59		.055	.100	.062	.120	.042	.080	.048	.085	.003	.057	.005	.033	.6 9 0
238/25 E-16W 1	760	430- 760	6/24/59		.184	.433	.473	.051	.056	.253	.131	.225	.063	.160	.036	.100	2.165
238/25E-16N1	760	0- 760	4/18/58	0.454	.482	.557	.559	.179	.105	.355	.188	.311	.066	.220	.039	.133	3.648
24s/26e-34F1	1,510	0-1,510	1/21/59		.242	.100	.111	051	.018	.063	025	.068	031	.038	057	.038	.514
24s/26E-36A2	2,200	0-2,200	5/12/59		.059	. 342	.333	.059	.096	.329	.062	.145	045	.168	060	.143	1.631
258/26E-01A2	892	0- 892	4/06/59		.058	.061	.059	013	004	.050	003	.096	012	.018	001	.014	.323

^{1/} Date when stabilized installation began giving acceptable record.

Note: a minus sign (-) indicates expansion.

Annual Amount 1973-90 Projected Average 1968 1969 1970 1971 1972 1958 1959 1960 Year 1961 1966 1967 1964 1965 1962 1963 55,47000 57,47000 57,47000 57,47000 57,47000 57,47000 57,47000 57,47000 57,47000 57,47000 feet) (acre-9,700 Tulare-Wasco : (percent : of total): 877778 6244367456 6244367456 624436 62446 624436 62446 624436 624436 624436 624436 624436 624436 624436 624436 62456 624436 6245 63.2 50.7 Subsidence Area 40,600 45,700 45,700 45,700 45,700 41,700 7,700 7,700 (acrefeet) 38,100 Arvin-Maricopa : (percent : of total): 49.3 36.8 79,700 111,000 88,800 64,800 110,400 116,500 116,500 116,500 58,800 95,000 55,100 (acre-feet) Total 15,40C Average Percent Annual

VOLUMES AND PROPORTIONS OF SUBSIDENCE USED IN KERN COUNTY GROUND WATER MODEL

TABLE

19

143.6 104.9 104.2 83.8 142.8 142.8 123.0 123.0

100.0

19.9

41.9 71.3 61.3 103.1

Of.

Table 20 shows the amount of subsidence water compared with the amount determined from the elastic storage coefficient (amounts are those of the confined nodes).

TABLE 20
SUBSIDENCE AND ELASTIC STORAGE CHANGES
IN 174 CONFINED NODES
1958 - 1966

Year	:	Confined Nodes Subsidence (acre-feet)	s: Storage : Change :(acre-feet)	Total (acre-feet)
1958 1959 1960 1961 1962 1963 1964 1965		73,300 101,300 98,100 77,400 71,100 56,200 91,600 49,700 100,100	7,700 8,700 4,700 8,500 -4,8001/ -2001/ 7,300 -1,0001/ 4,900	81,000 110,000 102,800 85,900 66,300 56,000 98,900 48,700 105,000
Total		718,800	35,900	754,700
Average	е	79,900	4,000	83,900

^{1/} Minus sign indicates that the amount of water in storage increased.

In the 1959-61 dry period, the model area's ratio of subsidence water to total surface water supply ranged from .20 to .25.

Since the late 1960's, new supplies of imported water have reduced the impact of subsidence on the Arvin-Maricopa area, although measurements of post-1970 subsidence volumes are still needed.

In Operational Run A (May 30, 1974) -- in which it was assumed that California Aqueduct deliveries would be nearly full by 1980 and water supplies from all other sources would be average -- a steady decline of water levels in the confined aquifer and the adjacent forebay was predicted through 1990 (the limit of the projection term). This finding suggests that subsidence will persist in the Tulare-Wasco area for more than 15 years.

For the Arvin-Maricopa subsidence area, the same run predicted rising water levels in the confined layer. A small overdraft was anticipated in the northern part of the area through 1987, but small water level declines in the unconfined layer were the result. This suggests that subsidence will soon be halted in the Arvin-Maricopa area.

Since above-average amounts of subsidence will persist in dry years in the Tulare-Wasco area, benchmarks there should be surveyed and subsidence water volume should be calculated approximately every five years.

Moisture-deficient Soils

Normal soils lying between the water table and the land surface contain moisture that cannot be removed by gravity -- a characteristic known as specific retention. When water is added to these soils, it moves through the soil to the water table under the force of gravity.

Moisture-deficient soils are those with a moisture content less than that of normal specific retention. Before percolated water can replenish the ground water supply, the moisture deficiency must be satisfied -- that is, the water required to raise the moisture content to the level of specific retention must be added.

Moisture-deficient soils are found along the west and south sides of the model and extend outside the model area to the west, in a pattern shown in Plate 11.

Moisture-deficient soils are not limited to the west and south sides of the model but are known to be important hydrologically in these areas because of their thickness (up to 46 metres, or 150 feet).

Moisture-deficient soils to depths of 0.9 to 4.6 metres (3 to 15 feet) were found in seven test holes drilled on nonirrigated land in central and eastern Kern County. Soils in the White Wolf subbasin and in the low foothills along Highway 65 (north of Bakersfield) were not tested, but large deficiencies are expected to be present.

Moisture-deficient soils are important to the model operation because applied water is absorbed and stored in these soils until the deficit is satisfied. Only then does the applied water begin to replenish ground water supplies.

In the spring of 1958, the initial estimate of the model's water deficit was 2 316 hm³ (1,878,000 acre-feet). The total Kern County deficit was estimated at 4 206 hm³ (3,410,000 acre-feet).

The soils west of the model are the only soils outside the model area known to be moisture-deficient.

One effect of the moisture-deficient soils is that, until the west side deficit -- including the shortage outside the model -- is satisfied, percolation from newly irrigated lands in that area will contribute little to the movement of poor-quality water toward the pumping trough in the center of the Valley.

Area Moisture Deficiency Studies

The concept of moisture-deficient soils was suggested in the late 1950's from analyses of laboratory data on soil samples taken from the west side of the Tulare Lake Basin during the Department's shallow subsidence investigation (Department of Water Resources' "Progress Report", 1958). Drilling to determine the thickness and range of moisture-deficient soils was completed early in 1960 as part of the staging and programming studies for the San Joaquin Valley Drainage Investigation.

Cause of Moisture Deficiency

The original Department report does not speculate on the causes of moisture deficiency, but a hypothesis is advanced by Dr. David K. Todd, consulting engineer and professor of civil engineering at the University of California (Todd, 1962).

Dr. Todd suggests that moisture-deficient soils are caused by the same mechanism believed to produce soils susceptible to shallow subsidence (hydrocompaction).

According to this hypothesis, mud flows deposit porous, clay-rich soils that are later covered by other mud flows. Water percolating under natural conditions never wets the soil enough to weaken the clay particle bonds and collapse the voids.

For the most part, the area where mud flows were observed coincides with the shallow subsidence soils. In the model area, however, moisture-deficient soils have been discovered where mud flows never occurred.

Agricultural soil scientists have also observed subsoils 6 metres (20 feet) thick that were as dry as the moisture-deficient soils (Alway, et al, 1919; Batchelor and Reed, 1923). The cited authors attributed the dry soil to the arid climate and deep-rooted perennial plants that continue to remove soil water through the dormant season.

The plant-root hypothesis, however, calls for a long lack of percolation -- long enough in some areas for more than 46 metres (150 feet) of soil to accumulate. Such a time period might easily include the last pluvial episode, when Pliestocene lakes were last filled.

It appears that another mechanism could be responsible for the moisture-deficient soils in the model area: a transfer of moisture in the form of water vapor from the deep subsoil to the earth's surface. Vapor transfer has been studied by an agricultural soil scientist (Baver, 1948) but only in reference to its effect on seasonal moisture changes in the root zone.

Where the creation period of moisture deficiency can be measured in centuries and the depth to water is commonly more than 30 metres (100 feet), vapor pressure -- aided perhaps by changes in barometric pressure such as those behind the "blowing and sucking well" phenomena (Ferris, et al, 1962) -- may be an effective mechanism for drying the deep subsoil.

Moisture Deficiency Classification

In the Department's initial examination of moisture-deficient soils, soils with a moisture content at least 10 percent less than the specific retention were labeled deficient. The criterion is also expressed by the following formula.

$$MC = n - SY - 10$$

where: MC = moisture content (percent by volume), n = porosity (percent by volume), and SY = specific yield (percent by volume).

Porosity minus specific yield (n-SY) equals specific retention. Porosity and moisture content were determined by laboratory tests, and specific yields of 3, 5, 10, or 25 percent were assigned to samples on the basis of sieve tests and/or visual classifications.

More accurate methods of determining specific yields are now available (in particular, one developed from a relation-ship between particle size and specific yield by Johnson, 1967), but data from the original work are insufficient to allow a redetermination of the yields of the samples. As a result, specific yields used in the original study were also used in the model study to determine the amount of moisture deficiency.

The 10-percent correction factor used in the criterion for moisture deficiency appears to have been applied to distinguish clear instances of moisture deficiency from cases arising from error (mainly in the value of specific yield). The 10-percent correction was used to classify the soils but not to

calculate the deficit described below. The methods used to determine specific yield and its effects on the Tulare Lake Basin study were also discussed by Dr. Todd.

The criterion of retention minus 10 percent was used to determine the depth of moisture-deficient soils at each test hole. Using judgment based on topography, geology, and hydrology, contours of equally deep moisture-deficient soils were mapped between the widely spaced test holes.

Amount of Moisture Deficiency

The amount of moisture deficiency in metres (feet) of water was calculated for each test hole from this relationship (Newmarch, 1961):

$$MD = \sum_{i=1}^{k} (n_i - SY_i - MC_i) \frac{d}{100k}$$

where: MD = moisture deficiency in metres (feet) of water,

> k = number of samples per test hole (samples were taken at 3-metre (10-foot) intervals where possible),

i = index of summation,

n = porosity,

SY = specific yield,

MC = moisture content, and
d = depth in metres (feet) of moisture-deficient soil.

The calculated moisture deficiency for each test hole is the product of the individual sample's average moisture deficiency as well as the depth of the moisture-deficient soils. The resultant moisture deficiency at each test hole was plotted on a map, and again judgment was used to draw contours of equal moisture deficiency. Finally, the contour map was used to determine (in acre-feet) the initial moisture deficiency for each node.

Note that data used to arrive at these conclusions were sparse. Only 17 test holes were available to determine the amount of moisture deficit, and just 77 samples were taken from these holes.

Since the error of an estimate is inversely proportional to the size of the sample, it seems probable that moisture-deficient parameters would require modification if more data were available. It may be possible to discover large errors through examinations of water level responses to percolation from irrigation in the unconfined aquifer's moisture-deficient nodes, but the most accurate method of adjusting the deficit is by resampling newly irrigated lands on the west side to determine the depth of water penetration. (The results would be compared to the irrigation histories of the sites.) The depth to water, percolation rate, and moisture deficiency must be known to estimate the time it will take percolation to affect the water table and consequently the gradient across the model's boundary.

Water Loss to Moisture-deficient Soils

The annual water loss to moisture-deficient soils was calculated by striking a water balance to determine percolation below the root zone in each node. The relationship used -- with all terms expressed in acre-feet -- follows.

 $DP = A_{SW} + A_{gW} - CU$

where: DP = deep percolation,

 A_{SW} = applied surface water, A_{GW} = applied ground water, and

CU = consumptive use.

The portion of deep percolation water absorbed by the soil was then calculated from the relationship:

 $L = DP \times R$

where: L = irrecoverable loss to the soil,

DP = deep percolation, and

R = ratio of area underlain by moisture-deficient soil to total area of the node.

The amount of percolated water lost each year to moisture-deficient soil was calculated for each node by determining if the quantity of deep percolation was less than the remaining nodal moisture deficit. The portion of each node with a deficit was assumed to be uniformly deficient, and percolating water was uniformly applied. The annual water losses of all nodes to moisture-deficient soils are shown in Table 21.

In Operational Run A (May 30, 1974), the model projected a peak loss of 99 hm³ (80,300 acre-feet) of water to moisture-deficient soils in 1976, followed by a decline to 31 hm³ (25,100 acre-feet) in 1990 -- the final year of projection. According to the run, by 1973, 24 percent of the model area's deficit was satisfied, and it was predicted that by 1990, 77 percent of the deficit would be satisfied. Moisture-deficient soils west of the model area will continue to absorb water long after 1990.

TABLE 21

ANNUAL WATER LOSS TO MOISTURE-DEFICIENT SOILS (in acre-feet)

Year	:	Amount	Year	:	Amount
1958 1959 1960 1961 1962 1963 1964 1965		19,100 29,200 27,300 31,000 24,500 19,100 28,800 23,800	1966 1967 1968 1969 1970 1971		30,400 21,900 26,500 31,800 28,700 45,500 64,900

In-transit Percolating Water

The change from native vegetation (which consumed essentially all of the precipitation) to irrigated agriculture (which results in an annual increment of ground water recharge) increases the amount of water in transit to the water table through the soil. On land developed during the modeling period, however, the total amount of in-transit water is small in comparison to the potential error in estimating the soil's moisture deficiency. Therefore, in-transit percolating water was not considered in the analysis.

Ground Water Movement

The present lack of wells and test holes constructed for ground water observation in the area west of the model prevents monitoring of gradients to determine direction of movement and inhibits estimates of the rate of movement of poor-quality ground water found there. If this potential threat to the area's ground water supply is to be evaluated and its effects anticipated, observation wells must be drilled and data gathered.

APPENDIX A

BIBLIOGRAPHY

BIBLIOGRAPHY

- Alway, F. J., et al. "Relation of Minimum Moisture Content of Subsoil of Prairies to Hygroscopic Coefficient".

 Botanical Gazette, Vol. 67, No. 3. March 1919.
- Batchelor, L. D., and H. S. Reed. "The Seasonal Variation of the Soil Moisture in a Walnut Grove in Relation to the Hygroscopic Coefficient". University of California Agricultural Experimental Station, College of Agriculture. Technical Paper No. 10. September 1923.
- Baver, L. D. "Soil Physics". Second Edition. Wiley. 1948.
- California Department of Water Resources. "Progress Report on Shallow Subsidence in the San Joaquin Valley". Office Report. 1958.
- Croft, M. G. "Subsurface Geology of the Late Tertiary and Quaternary Water-bearing Deposits of the Southern Part of the San Joaquin Valley, California". U. S. Geological Survey Water Supply Paper No. 1999H. 1972.
- Dale, R. H., et al. "Groundwater Geology and Hydrology of the Kern River Alluvial Fan Area, California". U. S. Geological Survey Open File Report. 1966.
- Davis, G. H., et al. "Ground-Water Conditions and Storage Capacity in the San Joaquin Valley, California". U. S. Geological Survey Water Supply Paper No. 1469. 1959.
- Ferris, J. G., et al. "Theory of Aquifer Tests". U. S. Geological Survey Water Supply Paper No. 1536E. 1962.
- General Electric Company. "TEMPO Computer Services for the Kern County Ground Water Investigation". Technical and Cost Proposal T-88027, submitted to Kern County Water Agency and California Department of Water Resources. October 3, 1968.
- Heady, Earl O., et al. "Agricultural Water Demands".
 California Region, Comp Framework Study, Appendix X,
 Irrigation and Drainage, Preliminary Field Draft.
 Prepared by Iowa State University for National Water
 Commission. November 1970.
- Hilton, G. S., et al. "Geology, Hydrology, and Quality of Water in the Terra Bella-Lost Hills Area, San Joaquin Valley, California". U. S. Geological Survey Open File Report. 1963.

- Johnson, A. I. "Specific Yield -- Compilation of Specific Yields for Various Materials". U. S. Geological Survey Water Supply Paper No. 1662D. 1967.
- Lofgren, B. E. "Land Subsidence Due to Ground Water Withdrawal, Arvin-Maricopa Area, California". U. S. Geological Survey Professional Paper No. 437D. 1975.
- Lofgren, B. E., and R. L. Klausing. "Studies of Land Subsidence Due to Ground Water Withdrawal, Tulare-Wasco Area, California". U. S. Geological Survey Professional Paper No. 437B. 1969.
- McClelland, E. V. Written communication to California Department of Water Resources.
- Newmark, George A. "Tulare Basin Moisture Deficiency Map". California Department of Water Resources Office Report. 1961.
- Page, R. W. "Base of Fresh Ground Water -- Approximately 3,000 Micromhos -- in San Joaquin Valley, California". U. S. Geological Survey Hydrologic Atlas No. 489. 1973.
- Park, W. H., et al. "Seismic Hazard Atlas, Kern County, California". Kern County Council of Governments. Undated.
- Poland, J. F., et al. "Land Subsidence in the San Joaquin Valley, California, as of 1972". U. S. Geological Survey Professional Paper No. 437H. 1975.
- Rector, Michael R. "Kern County, California, Groundwater Basin Model -- A Review". Kern County Water Agency files.

 December 1974.
- Thiessen, A. H. "Precipitation for Large Areas". Monthly Weather Review, Vol. 39, pp. 1082-1084. July 1911.
- Todd, D. K. "A Review of Moisture Deficiency in the Tulare Basin, California". Office Report attached to California Department of Water Resources "Ground Water Geology of the Tulare Basin". 1963.
- Weber, Ernest M. "Ground Water Basin Model Technique". California Department of Water Resources Technical Memorandum No. 19. July 1966.
- Wilson, Charles R. "Kern County Water Agency Groundwater Model Characteristics and Verification". Report from Leeds, Hill and Jewett to Kern County Water Agency. Draft dated June 30, 1975.

- Wood, P. R., and R. H. Dale. "Geological and Ground Water Features of the Edison-Maricopa Area, Kern County, California". U. S. Geological Survey Water Supply Paper No. 1656. 1964.
- Wood, P. R., and G. H. Davis. "Ground Water Conditions in the Avenal-McKittrick Area, Kings and Kern Counties, California". U. S. Geological Survey Water Supply Paper No. 1457. 1959.

APPENDIX B

HYDROLOGIC DATA

TABLE 22 SURFACE WATER INFLOW (in acre-feet)

	r: Kern River	Calendar	: Kern River	Calendar	: Kern River
Year	: First Point	Year	: First Point	Year	: First Point
1894	522 000	1930	3/15 000	1066	1
1895	533,000 1,022,000	1930	345,000 186,000	1966	504,500
1896	620,000	1932	737,000	1967	1,465,800
1897				1968	497,000
1898	893,000	1933	441,000	1969	2,313,800
	252,000	1934	227,000	1970	601,200
1899	339,000	1935	474,000	1971	442,600
1900	332,000	1936	796,400	Base Perio	d Maan
1901	380,000	1937	1,260,000	(1958-66)	
1902	553,000	1938	1,359,000	(1970-00)	511,800
1903	546,000	1939	461,000	72 voon Mo	n wn
1904	493,000	1940	789,100	73-year Mea	
1905	532,000	1941	1,401,000	(1894-1966)) 668,200
1307)JE,000	1.J-1.	1,401,000	Dogo Dogi s	. V
1906	1,900,000	1942	772,000	Base Period	
1907	1,070,000	1943	1,221,000	73-year M	nean
1908	506,000	1944	625,600		
1909	1,840,000	1945	938,000		
1910	660,000	1946	650,700		
1910		1940			
1911	1,010,000	1947	406,700		
1912	388,000	1948	329,500		
1913	368,000	1949	302,900		
1914	1,110,000	1950	602,800		
1915	646,000	1951	442,200		
1916	1,992,000	1952	1,501,000		
1917	823,000	1953	548,200		
	02.5,000	-,,,,) 10 , 200		
191.8	538,000	1954 <u>1</u> /	520,200		
1919	499,000	1955	367,800		
1920	601,000	1956	755,500		
1921	509,000	1957	445,900		
1922	861,000	1958	967,500		
1923	501,000	1959	353,200		
- •					
1924	188,000	1.960	324,100		
1925	466,000	1961	177,100		
1.926	367,000	1962	607,800		
1927	792,000	1963	676,200		
1928	313,000	1964	361,600		
1929	323,000	1965	634,300		

^{1/} Isabella Dam in operation. All subsequent flows are controlled releases.

TABLE 22 (continued)

SURFACE WATER INFLOW (in acre-feet)

Calendar	*		Poso Creek		
Year	First Point	Mons Station	: Highway 155	Highway 99	Wasco-Pond Highway
1936 1937 1938 1939					2,200 14,400 9,200 300
1940					5,700
1941 1942 1943 1944				0	10,300 200 86,200 780
1945		41,000		22,212	10,401
1946 1947 1948 1949 1950		18,500 8,905 9,432 9,956 10,509		2,289 152 0 0	0 0 0 0
1951 1952 1953 1954 1955		13,740 70,190 25,784 12,938 9,352		84 43,424 0 0 0	0 18,852 0 0
1956 1957 1958 1959 1960	6,630	21,689 7,942 50,858 4,498 6,738	8,120 8,195 8,275	5,702 0 36,242 0 0	3,868 0 16,217 0 0
1961 1962 1963 1964 1965	2,500 8,670 5,970 8,600 23,290	2,750 9,025 3,806 11,210	8,040 7,905 7,769 7,775 7,360		0 0 0 0 200
1966 1967 1968 1969	18,515 27,890 7,820 101,000		7,360		1,300 10,200 0 40,000
Av era ge 1958-66			7,870		1,970

TABLE 22 (continued)

SURFACE WATER INFLOW (in acre-feet)

Calendar Year	San : Emigdio : Creek :	Caliente Creek	Tehachapi Creek	Pastoria Creek	Santiago Creek ^e	Los Lobos Creek ^e
1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968	2,580 ^e 30 ^e 595 1,130 671 965 754 545 673 819 697 3,870	8,600 ^e 90 ^e 1,970 ^e 60 ^e 1,710 457 436 1,660 911 1,190 362 10,180	197 0 0 17 34 1,050	2,820 ^e 30 ^e 60 ^e 280 ^e 550 ^e 230 ^e 280 ^e 137 218 433 600 1,730	1,395 18 322 612 309 459 408 295 364	387 5 99 188 112 161 126 91
Average 1958-66	882	1,766		512	465	142
	Plieto Creek ^e	Salt Creek ^e	: Tecuya : Creek ^e	Grapevine Creek ^e	El Paso :	Tejon Creek ^e
1958 1959 1960 1961 1962 1963 1964 1965	1,980 26 460 877 517 747 585 414 521	1,278 17 295 561 332 477 373 270 243	706 8 17 77 153 91 77 138 102	827 638 571 616 774 540 720 810 494	79 3,785 46 79 370 735 445 370 670 490	3,463 74 792 50 688 376 351 669 367
Average 1958-66	681	427	152	666	777	759

TABLE 22 (continued)

SURFACE WATER INFLOW (in acre-feet)

Calendar : Year :	Caparell Creek ^e	Chanac and Comanche Creeks ^e	Little Sycamore Creek ^e	: Sycamore : Creek ^e :	Friant- Kern Canal	California Aqueduct (to Kern County)
1958 1959 1960 1961 1962 1963 1965 1966 1967 1968 1969 1970 1971	473 0 108 0 92 26 24 91 50	344 74 786 0 684 0 0 664 364	422 96 0 84 23 21 81 44	783 0 179 0 156 42 40 151 83	234,230 164,628 155,591 123,979 231,720 235,209 190,642 245,518 232,243 334,729 207,249 390,670 363,545 349,155	127,384 141,265 204,634 360,151 490,781
Average 1958-66	324	96	86	159	201,529	

e = estimated.

TABLE 23

PRECIPITATION RECORDS FOR STATIONS
IN KERN COUNTY GROUND WATER BASIN
(in inches)

Year	:	Lost Hills	:	Wasco	:	Delano	Button- villow	Bakers- field Airport	:	Taft	:	Tule Field
1899-1900				4.16								
1900-1901				6.27								
1901-1902				4.59								
1902-1903		~-		4.31								
1903-1904				4.11								
1904-1905				8.37								
1905-1906				9.08								
1906-1907				4.84								
1907-1908				6.75								
1908-1909				5.79								
1909-1910		خشة عبيد		4.25								
1910-1911				6.21								
1911-1912				4.54								
1912-1913		NC		3.30								
1913-1914		5.86		7.59								
1914-1915		9.67		13.50								
1915-1916		6.77		7.46			- -					
1916-1917		5.66		5.19								
1917-1918		7.84		3.27								
1918-1919		5.41		4.68								
1919-1920		6.30		5.92								
1920-1921		4.72		8.93								
1921-1922		8.43		9.59								
1922-1923		4.66		3.68								
1923-1924		3.86		3.25								
1924-1925		4.64		6.88								
1925-1926		4.40		4.08								
1926-1927		6.34		7.81								
1927-1928		5.94		5.24								
1928-1929		3.49		4.91								- -
1929-1930		4.67		5.10								
1930-1931		4.34		6.35			_ ~					
1931-1932				7.67								
1932-1933				5.24								
1933-1934				3.81								

TABLE 23 (continued)

PRECIPITATION RECORDS FOR STATIONS IN KERN COUNTY GROUND WATER BASIN (in inches)

Year	Lost Hills	Wasco	: Delano	Button- willow	Bakers-: field: Airport:	Taft :	Tule Field
1934-1935 1935-1936 1936-1937 1937-1938 1938-1939	 	11.34 5.86 10.24 11.83 6.76		 	 10.43 6.86	 	
1939-1940 1940-1941 1941-1942 1942-1943 1943-1944	10.90 7.13 7.73 3.93	6.42 12.06 7.85 9.61 4.99	 	9.69 7.28 8.12 4.18	7.23 11.61 5.04 9.64 5.16	9.73 NC 8.58 4.66	
1944-1945 1945-1946 1946-1947 1947-1948 1948-1949	4.51 4.11 3.27 2.95 4.19	7.17 4.58 3.67 3.63 4.49	 	4.34 3.86 4.17 3.01 4.29	7.36 5.14 5.18 4.44 4.06	6.07 4.21 NC 3.23 3.53	
1949-1950 1950-1951 1951-1952 1952-1953	3.62 2.31 7.97 4.73 5.31	3.86 3.60 8.39 4.75 5.42	4.47 9.35 5.75 6.02	3.35 4.37 7.10 5.13 5.03	4.88 5.21 8.68 6.39 4.41	3.47 3.36 NC 4.20 4.30	4.33 5.33 6.99 6.24 4.01
1954-1955 1955-1956 1956-1957 1957-1958 1958-1959	8.56	5.17 4.80 4.75 12.28 4.13	6.02 5.32 5.18 13.69 5.87	4.09 3.11 3.53 8.20 3.19	4.64 3.90 4.70 10.01 2.45	4.89 3.49 6.05 8.01 5.00	3.72 4.97 6.35 8.83 2.77
1959-1960 1960-1961 1961-1962 1962-1963 1963-1964		3.98 4.65 9.13 6.60 4.66	4.43 6.22 8.52 6.41 5.42	3.14 4.34 8.60 3.86 2.90	4.30 4.07 6.44 4.55 4.60	3.87 ^p 4.12 9.33 4.72 4.13	3.91 3.63 5.58 4.53 5.11
1964-1965 1965-1966	6.05 5.71	6.01 3.94	7.47 4.73	4.97 4.84	5.75 5.18	5.80 6.17 ^p	5.53 5.37
Years of record	ሰ ተ	67	16	26	29	23	17

^{-- =} no record; NC = incomplete record; p = partially estimated.

:				Year				
: 1958	: 1959	: 1960	: 1961	: 1962	: 1963	: 1964	: 1965	: 1966
1.07	0.56	1.05	0.59	0.81	0.13	0.45	0.65	0.81
2.00	1.39	1,26	0.20	4.91	1.46	0.18	0.25	0.95
1.07	0.00	0.66	0.42	0.33	1.18	0.48	0.98	0.10
2.09	0.40	0.68	0.13	0.00	1.03	0.57	1.88	0.00
0.65	0.17	0.00	0.00	0.12	0.71	0.13	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.40	0.00	0.00	0.02
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.34	0.00
0.00	0.00	0.00	0.00	0.00	0.01	0.08	0.00	0.00
0.73	0.00	0.00	0.00	0.00	0.63	0.08	0.19	0.00
0.00	0.00	0.20	0.00	0.15	0.87	0.67	0.00	0.00
0.40	0.00	2.74	0.66	0.00	1.07	0.59	1.24	0.53
0.00	0.39	0.00	0.62	0.00	0.22	0.85	1.56	0.98
8.01	2.91	6.59	2.63	6.32	7.70	4.08	7.09	3.37
	2.00 1.07 2.09 0.65 0.00 0.00 0.73 0.00 0.40 0.00	1.07 0.56 2.00 1.39 1.07 0.00 2.09 0.40 0.65 0.17 0.00 0.00 0.00 0.00 0.73 0.00 0.73 0.00 0.40 0.00 0.40 0.00 0.00 0.39	1.07 0.56 1.05 2.00 1.39 1.26 1.07 0.00 0.66 2.09 0.40 0.68 0.65 0.17 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.73 0.00 0.00 0.40 0.00 2.74 0.00 0.39 0.00	1.07 0.56 1.05 0.59 2.00 1.39 1.26 0.20 1.07 0.00 0.66 0.42 2.09 0.40 0.68 0.13 0.65 0.17 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.73 0.00 0.00 0.00 0.40 0.00 2.74 0.66 0.00 0.39 0.00 0.62	: 1958 : 1959 : 1960 : 1961 : 1962 1.07 0.56 1.05 0.59 0.81 2.00 1.39 1.26 0.20 4.91 1.07 0.00 0.66 0.42 0.33 2.09 0.40 0.68 0.13 0.00 0.65 0.17 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.73 0.00 0.20 0.00 0.15 0.40 0.00 2.74 0.66 0.00 0.00 0.39 0.00 0.62 0.00	: 1958 : 1959 : 1960 : 1961 : 1962 : 1963 1.07 0.56 1.05 0.59 0.81 0.13 2.00 1.39 1.26 0.20 4.91 1.46 1.07 0.00 0.66 0.42 0.33 1.18 2.09 0.40 0.68 0.13 0.00 1.03 0.65 0.17 0.00 0.00 0.12 0.71 0.00 0.00 0.00 0.00 0.00 0.00 0.40 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.73 0.00 0.00 0.00 0.00 0.15 0.87 0.40 0.00 2.74 0.66 0.00 1.07 0.00 0.39 0.00 0.62 0.00 0.22	: 1958 : 1959 : 1960 : 1961 : 1962 : 1963 : 1964 1.07 0.56 1.05 0.59 0.81 0.13 0.45 2.00 1.39 1.26 0.20 4.91 1.46 0.18 1.07 0.00 0.66 0.42 0.33 1.18 0.48 2.09 0.40 0.68 0.13 0.00 1.03 0.57 0.65 0.17 0.00 0.00 0.12 0.71 0.13 0.00 0.00 0.00 0.00 0.00 0.40 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.73 0.00 0.00 0.00 0.00 0.15 0.87 0.67 0.40 0.00 2.74 0.66 0.00 1.07 0.59 0.00 0.39 0.00 0.62 0.00 0.22 0.85	: 1958 : 1959 : 1960 : 1961 : 1962 : 1963 : 1964 : 1965 1.07 0.56 1.05 0.59 0.81 0.13 0.45 0.65 2.00 1.39 1.26 0.20 4.91 1.46 0.18 0.25 1.07 0.00 0.66 0.42 0.33 1.18 0.48 0.98 2.09 0.40 0.68 0.13 0.00 1.03 0.57 1.88 0.65 0.17 0.00 0.00 0.12 0.71 0.13 0.00 0.00 0.00 0.00 0.00 0.40 0.00

<u>1</u>/ Weighted by Thiessen Polygon method for the seven stations in Table 23.

TABLE 25

EFFECTIVE PRECIPITATION USED BY CROPS IN MODEL AREA 1958-1966

(in thousands of acre-feet)

Conn	:				Year				
Crop	: 1958	: 1959	: 1960	: 1961	: 1962	: 1963	: 1964	: 1965	: 1966
Alfalfa	79.0	32.2	54.6	30.0	54.3	72.4	42.7	74.5	29.6
Pasture	12.4	4.6	5.1	2.6	4.8	10.7	4.9	8.2	3.1
Potatoes	25.9	7.1	11.4	3.3	16.3	18.4	4.6	14.9	4.2
Barley	49.1	20.9	25.9	7.6	41.8	32.3	11.5	23.5	12.0
Onions	1.0	0.5	0.6	0.5	1.5	0.6	4.0	8.4	0.5
Beets	2.3	0.4	0.7	0.3	1.5	7.1	2.6	5.5	1.9
Cotton	19.9	3.6			1.6	24.3	4.4	7.1	
Vineyard	13.6	5.8	6.7	2.0	15.2	12.8	4.3	9.8	5.3
Deciduous									
orchard	0.7	0.1	0.2	0.1	0.1	1.6	0.7	1.2	
Subtropical	0.4	0.2	0.3	0.1	0.8	0.5	0.2	0.3	0.5
Miscellaneous field	27.8	0.3	6.4	2.5	2.1	22.3	6.0	18.1	1.0
Total	232.1	78.7	111.9	49.0	140.0	203.0	85.9	171.5	58.1

TABLE 26

MUNICIPAL POPULATION AND WASTE WATER INPUT TO TREATMENT PLANTS
1958 - 1966

Year	Delano	McFarland	Wasco	Shafter	Bakersfield	Buttonwillow V	Veedpatch-: Lamont :	Arvin	Total
				Po	pulation				
1958 1959 1960 1961 1962 1963 1964 1965	14,550 14,736 14,922 15,108 15,294 15,480 15,666 15,852 16,038	3,820 3,865 3,910 3,955 4,000 4,045 4,090 4,135 4,180	8,379 8,422 8,465 8,513 8,561 8,609 8,657 8,705 8,753	8,086 8,086 8,000 8,000 8,000 8,000 8,000 7,914	137,635 140,559 144,266 146,743 149,773 152,802 155,832 158,861 161,888	2,911 2,863 2,815 2,767 2,719 2,671 2,624 2,576 2,526	7,848 7,936 8,024 8,112 8,200 8,288 8,378 8,466 8,554	5,919 5,895 5,872 5,848 5,825 5,802 5,778 5,755 5,731	189,148 192,362 196,360 199,046 202,372 205,697 209,025 212,350 215,584
				<u>(in</u>	Sewage acre-feet)				
1958 1959 1960 1961 1962 1963 1964 1965	1,582 1,624 1,660 1,722 1,764 1,806 1,826 1,875 1,921	495 501 506 512 518 530 530 535 541	1,120 1,120 1,110 1,120 1,120 1,120 1,120 1,120	1,000 1,000 953 1,000 1,000 1,000 1,000 1,000	14,359 14,671 15,615 14,721 15,382 6,092 16,491 16,421 18,128	0 0 0 0 0 0 0 0	785 794 802 811 820 838 838 855 855	474 472 470 466 466 462 462 458	19,815 20,182 21,116 20,352 21,070 21,848 22,267 22,264 24,023

TABLE 27

70 21 21 25 35 45 45 45 45 45 45 45 45 45 45 45 45 45	Node No.
2,8t6 15,856 2,856 3,551 3	: 1958 :
2,821 13 82 82 82 82 75 75 75 75 75 75 75 75 75 75 75 75 75	1959 :
2,816 2,	19 6 0 :
2,862 23,973,911 23,862 23,567	1961 :
\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Year 1962 :
2,95 30,052,051,551,551,551,551,551,551,551,551,551	1963 :
2,990 3071 52 52 52 52 53 54 53 55 53 55 53 55 53 55 53 55 53 55 53 55 53 55 53 55 53 55 53 55 53 55 55	1964 :
3,037	1965 :
3,199 100 100 100 100 100 100 100	1966

TABLE 28
OIL FIELD WASTE WATER SUPPLY RECHARGE FOR AGRICULTURE (in acre-feet)

Year	Node 88	: Node 92	Node 93	Total
1958	690	805	805	2,300
1959	690	805	805	2,300
1960	690	805	805	2,300
1961	700	817	817	2,334
1962	684	798	798	2,280
1963	742	866	866	2,474
1964	789	920	920	2,629
1965	839	979	979	2,797
1966	990	1,155	1,155	<u>3,300</u>
Average 1958-66	757	883	883	2,524
Reported 1972 Total				4,703

TABLE 29

POPULATION DISTRIBUTION, URBAN BAKERSFIELD AREA
CENSUS TRACTS TO NODAL AREAS

Node No.	: Census Tracts	1960 Population	1970 Population	: Change : per Year : (percent)
91	1/2-1.01	1,743	2,033	1.66
112	1/2-5	1,112	1,937	7.42
113	1/2-1.01, 3/4-2, 3/4-3, 4, 1/5-5	10,405	13,560	3.03
114	51.02, 1.02, 1/4-2, 1/4-3, 1/4-6	6,424	7,972	2.41
115	4/5-9.01, 9.02, 9.03	3 ,0 99	10,054	22.44
120	1/5-9.01, 9.04, 9.05, 9.06, 9.07, 11.01, 11.02, 11.03, 23.01, 1/8-10	23,710	28,548	2.00
121	12, 13, 14, 15, 2/3-16, 20, 21, 22, 23.02	38,000	34,467	-1.00
122	1/3-16, 17, 2/3-18, 19.01, 19.02, 1/5-5	16,102	18,065	1.22
123	1/8-5, 1/8-38, 1/3-18	1,698	2,847	6.76
139	9/10-28.01, 1/4-31.01	487	2,065	32.40
140	27, 1/10-28.01, 28.02, 28.03, 28.04, 29.01, 1/4-31.01	13,501	21,225	5 .72
141	1/5-24, 25, 26, 30, 1/2-31.02, 1/2-31.03	17,312	19,029	1.00
142	7/16-24	1,197	1,035	-1.35
150	3/16-24, 5/32-62, 1/6-64	2,614	2,462	-0.58
151	2/3-31.02, 1/2-31.03, 32.02, 1/16-24, 1/40-62	4,918	7,637	5•53
152	1/4-31.01, 1/2-32.01	1,908	2,088	0.94
Total		144,230	175,024	2.13

TABLE 30 MUNICIPAL POPULATION PROJECTIONS

Node :		:Year															
No.	Municipality	: 1958	: 1959	: 1960 ^c	: 1961	: 1962	: 1963	: 1964	: 1965		: 1967	: 1968	: 1969	: 1970 ^c	: 1980 ^e	: 1990 ^e	: 2000 ^e
91	Bakersfield	1,685	1,714	1,743	1,772	1,801.	1,830	1,859	1,888	1,917	1,946	1,975	2,004	2,033	2,379	2,760	3,202
112	Bakersfield	947	1,017	1,112	1,194	1,277	1,359	1,442	1,524	1,607	1,689	1,771	1,853	1,937	3,370	5,863	10,202
113	Bakersfield	9,775	10,090	10,405	10,720	11,038	11,350	11,665	11,980	12,295	12,610	12,925	13,240	13,560	14,007	14,750	14,750
114	Bakersfield	6,114	6,269	6,424	6,579	6,734	6,889	7,044	7,199	7,354	7,509	7,664	7,819	7,972	8,000	8,000	8,000
115	Bakersfield	1,709	2,404	3,099	3,794	4,489	5,184	5,879	6,574	7,269	7,964	8,659	9,354	10,054	12,265	14,963	18,255
120	Bakersfield	22,742	23,226	23,710	24,194	24,678	25,162	25,646	26,130	26,614	27,098	27,582	28,066	28,548	32,259	35,000	36,000
121	Bakersfield	38,750	38,393	38,000	37,679	37,322	36,965	36,608	36,251	35,894	35,537	35,183	34,829	34,467	34,000	34,000	34,000
122	Bakersfield	15,710	15,906	16,102	16,298	16,494	16,690	16,886	17,082	17,278	17,474	17,670	17,866	18,065	22,065	26,085	30,065
123	Bakersfield	1,468	1,567	1,698	1,812	1,927	2,042	2,157	2,272	2,387	2,502	2,617	2,732	2,847	4,754	7,939	13,258
139	Bakersfield	171	226	487	644	802	960	1,118	1,276	1,433	1,590	1,747	1,904	2,065	3,449	5,760	9,619
140	Bakersfield	11,503	12,228	13,501	13,678	14,403	15,128	15,853	16,578	17,303	18,907	19,680	20,452	21,225	23,347	25,681	28,250
141	Bakersfield	16,968	17,140	17,312	17,484	17,656	17,828	18,000	18,172	18,344	18,516	18,688	18,860	19,029	20,932	23,025	25,327
142	Bakersfield	1,229	1,213	1,197	1,180	1,164	1,148	1,132	1,116	1,099	1,082	1,065	1,048	1,035	1,082	1,131	1,182
150	Bakersfield	2,645	2,630	2,614	2,598	2,583	2,568	2,553	2,538	2,522	2,506	2,490	2,474	2,462	2,573	2,689	2,810
151	Bakersfield	4,374	4,646	4,918	5,190	5,462	5,734	6,006	6,278	6,550	6,822	7,094	7,366	7,637	11,685	17,878	27,353
152	Bakersfield	1,872	1,890	1,908	1,927	1,946	1,965	1,984	2,003	2,022	2,041	2,060	2,079	2,088	3,195	4,888	7,478
12	Delano	14,550	14,736	14,922	15,108	15,294	15,480	15,666	15,852	16,038	16,224	16,410	16,596	16,783	18,881	21,241	23,896
39	McFarland	2,864	2,898	2,932	2,966	3,000	3,034	3,068	3,102	3,136	3,170	3,204	3,238	3,269	3,645	4,064	4,531
40	McFarland	956	967	978	989	1,000	1,011	1,022	1,033	1,044	1,055	1,066	1,077	1,090	1,215	1,355	1,511
61	Wasco	7,532	7,575	7,618	7,661	7,704	7,747	7,790	7,833	7,876	7,919	7,962	8,005	8,049	8,508	8,993	9,506
62	Wasco	847	847	847	852	857	862	867	872	877	882	887	892	894	945	999	1,056
85	Shafter	4,043	4,043	4,043	4,000	4,000	4,000	4,000	4,000	3,957	3,957	3,950	3,941	3,932	4,000	4,000	4,000
86	Shafter	4,043	4,043	4,043	4,000	4,000	4,000	4,000	4,000	3,957	3,957	3,950	3,941	3,932	4,000	4,000	4,000
105	Buttonwillow	2,911	2,863	2,815	2,767	2,719	2,671	2,624	2,576	2,526	2,476	2,426	2,376	2,335	2,350	2,350	2,350
166	Weedpatch-Lamont	3,924	3,968	4,012	4,056	4,100	4,144	4,189	4,233	4,277	4,321	4,365	4,409	4,456	4,946	5,490	6,094
167	Weedpatch-Lamont	3,924	3,968	4,012	4,056	4,100	4,144	4,189	4,233	4,277	4,321	4,365	4,409	4,456	4,946	5,490	6,094
169	Arvin	5,919	<u>5,895</u>	5,872	<u>5,848</u>	5,825	5,802	5,778	5,755	_5,731	5,720	5,698	5,676	5,654	5,700	5,700	_5,700
Totals	3	189,175	192,362	196,324	199,046	202,375	205,697	209,025	212,350	215,584	219,795	223,153	226,506	229,874	258,498	294,094	338,489

c = year of census; e = estimated.

TABLE 31 CROPPING PATTERNS OF IRRIGATED LAND 1958 - 2020 (in thousands of acres)

Cnan	:_			Y	ear			
Crop	<u>:</u>	1958	:	1969	:	1990	:	2020
Grain		87.6		95•9		140		120
Cotton		193-1		231.0		250		280
Sugar beets		7-7		27.1		40		65
Miscellaneous field		53.0		64.0		124		167
Alfalfa		130.1		136.9 ¹ /		191		195
Pasture		14.2				13		13
Truck		65.5		78.2		134		145
Deciduous		5.4		22.9		38		50
Subtropical		1.6		20.1		35		45
Vineyard		28.3		38.2		55		65
Total crop area (net)		586.5		714.3		1,020		1,145
Double crop				7•9		70		85
Total land in crop				706.4		9 50		1,060

^{1/} Includes pasture.

Source: basic data for Department of Water Resources Bulletin No. 160-70.

Average 1958-66	1958 1960 1961 1962 1963 1964 1965 1966 1967 1967		Average 1958-66	Year 1958 1959 1960 1961 1962 1963 1964 1965	
101	Node 51 88 88 88 88 88 88 88 88 143 143 175 178 113 132		10,000	Node 23: Node 23: 6,212 10,780 10,772 8,221 9,140 9,456 12,881 10,274 12,235	
16	14 14 14 14 14 14 14 14 28 28 28 28 28 29 21 21	ills Wate	5,000	Extractions: Node 35: Node 35: 3,106 5,390 5,361 4,110 4,570 4,728 6,440 5,137 6,118	
	 ··	Dist	15,000	Total 9,318 16,170 16,133 12,331 13,710 14,184 19,321 15,411 18,353	
84	74 774 774 774 774 774 774 774 775 1119 1119 1119 1119 1119 1119 1119	rted -	2,300	Alpaugh Irri : Deep Pe : Node 8 1,440 2,608 2,485 1,905 2,118 2,118 2,193 2,985 2,382 2,382 2,382	
600	Node 80 518 583 565 513 484 548 604 741 1,179 1,146 1,359	이번	1,400	Irrigation District Conveya	
		Company :	200	ומן וסו אממאראמאמ	
		West Kern (100	Ce Losses Evaporation : de 8 : Node 23 : 18	
3,100	Node 157 2,116 2,918 2,698 2,722 2,747 2,876 3,280 4,270 4,455		4,000	Total Losses 2,473 4,465 4,269 3,272 3,638 3,767 5,127 4,091 4,873	
		er District	11,000	Exported: 6,845 11,705 11,864 9,059 10,072 10,417 14,194 11,320 13,480	

GROUND WATER EXTRACTIONS FOR EXPORT (in acre-feet)

TABLE 32

APPENDIX C

GEOLOGIC DATA

TABLE 33

SELECTED DATA FROM UNCONFINED AQUIFER NODES
DATA BASE FOR RUN 'A'
May 30, 1974

Node No.	Elev (f	vation eet)	Area	: :Specific : Yield	:Moisture: : Defi- :ciency1/:	Initial Water Elevation	:Subsi-	Fraction Pumped in Upper
	Тор	Bottom		:(percent)	: (acre- : : feet) :	(feet)	¹:(feet) :	Layer37
1	318	-602	5,760	10.3	31,700	207	0.00	0.95
2	247	- 753	5,760	8.1	28,800	204	0.00	0.95
3	215	- 560	5,760	8.0	4,040	198	0.00	0.95
4	218	-362	5,760	8.1	0	192	0.00	0.58
5 6	218	-232	5,760	8.2	0	185	0.00	0.44
	217	-83	5,760	8.4	0	178	0.00	0.35
7	215	- 85	5,760	10.3	0	160	0.00	0.35
8	216	-24	5,760	8.6	0	147	0.00	0.20
9	227	27	5,760	8.8	0	160	0.00	0.20
10	243	-57	5,760	10.8	0	184	0.00	0.40
11	265	-51	5,760	9.8	0	183	0.00	0.30
12	310	90	5,760	10.0	0	224	0.00	0.25
13	368	98	5,760	10.0	0	279	0.00	0.20
14	462	-738	5,760	8.8	0	167	0.77	1.004/
15	575	-425	7,680	8.7	0	255	1.33	1.004/
16	600	- 360	5,760	8.6	0	270	1.06	$1.00\frac{4}{1}$
17	474	- 829	5,760	8.4	0	154	0.69	1.004/
18	367	102	5,760	8.6	0	212	0.00	0.40
19	307	27	5,760	9.3	0	197	0.00	0.31
20	287	2	5,760	9.2	0	194	0.00	0.31
21	263	-27	5,760	10.1	0	175	0.00	0.30
22	242	- 33	5,760	8.6	0	162	0.00	0.35
23	217	- 53	5,760	10.4	0	134	0.00	0.30
24	220	-21	5,760	11.5	0	153	0.00	0.70
2 5	222	-108	5,760	12.3	0	175	0.00	0.32
26	220	-215	5,760	11.5	0	185	0.00	0.40
27	224	-201	5,760	10.5	0 200	207	0.00	0.70
28	225	- 415	5,760	10.3	26,300	206	0.00	0.65
2 9	295	-23 5	5,125	9.8	47,200	207	0.00	0.95
30	262	-238 -244	6,444	9.8	70,800	206	0.00	0.95
31	231		5,760	12.3	26,240	208	0.00	0.90
32	237	12	5,760	10.5	0	200	0.00	0.80
33	227	- 37	5,760	10.6	0	172 166	0.00	0.50
34 35	225	- 35	5,760	12.2	0		0.00	0.50
35 26	235 255	-25 -1	5,760 5,760	11.5 8.8	0	165 1 7 0	0.00	0.35 0.30
36 37	280	-1 17	5,760	11.3	0	190	0.00	0.30
31 38	315	10	5,760	10.7	0	225	0.00	0.25
	343	43	5,760	9.1	0	202	0.00	0.45
39 40	400	125	5,760 5,760	9.1 8.8	0	160	0.00	
40 41	545	- 555	5,760	8.4	0	160	0.96	0.35 1.004/
41	フサフ	~777	7,700	0.4	U	700	0.90	T+00'_/

SELECTED DATA FROM UNCONFINED AQUIFER NODES DATA BASE FOR RUN 'A' May 30, 1974

:	***			:	:Moisture:	T242-3	•	**************************************
Wada:		ration . reet) .	1-00	:Specific	: Defi-,:	Initial Water	:Subsi-	Fraction
Node.	(1		Area (acres)	: Yield	:ciency $\frac{1}{2}$:		:dence2/	Pumped in Upper
MO.:	Top	Bottom	(acres)	:(percent)		Elevation (feet)	':(feet)	Layer3
:	TOD	:BO C COM:		<u>:</u>	: feet) :	(1660)	:	. nayerz
42	650	-13	5 ,7 60	8.2	0	3 60	0.57	$1.00\frac{4}{h}$
43	750	-100	5,760	8.1	ő	360	0.80	$1.00\frac{4}{1}$
44	550	-600	5,760	8.4	ŏ	160	1.47	$1.00\frac{1}{4}$ /
45	410	-1,090	5,760	8.6	ŏ	163	0.62	1.004
46	372	72	5,760	12.9	ŏ	280	0.00	0.30
47	333	43	5,760	11.5	ŏ	235	0.00	0.35
48	293	- 27	5,760	9.2	ŏ	192	0.00	0.35
49	268	-42	5,760	9.2	Ö	154	0.00	0.40
50	248	-117	5,760	11.5	Ō	175	0.00	0.40
51	240	- 97	5,760	11.6	Ö	18ó	0.00	0.20
52	235	60	5,760	11.3	Ō	193	0.00	0.19
53	235	-85	5,760	11.4	Ö	190	0.00	0.95
54	248	- 252	7,144	11.5	53,600	208	0.00	0.95
55	300	- 135	5,760	9.3	57,600	215	0.00	0.80
56	235	-230	5,760	11.5	6,000	211	0.00	0.79
57	245	-215	5,760	12.1	0	202	0.00	0.45
58	264	-52	5,760	11.6	0	200	0.00	0.30
59	264	-51	5,760	11.4	0	182	0.00	0.33
60	282	2	5,760	9.4	0	170	0.00	0.30
61	315	35	5,760	9.6	0	180	0.00	0.40
62	350	60	5,760	9.8	0	220	0.00	0.35
63	368	112	5,760	13.2	0	27 9	0.00	0.50,
64	435	-1,265	5,760	11.3	0	201	0.73	1.004/
65	590	-1,315	5,760	9.6	0	21 9	1.58	$1.00\frac{4}{1}$
66	700	- 566	5,760	10.1	0	324	0.69	$1.00\frac{4}{1}$
67	525	-1,275	5,760	10.0	0	315	0.53	1.004/
68	485	-1,7 55	5,760	9.4	0	216	1.09	$1.00\frac{4}{1}$
69	450	-1,750	5,760	10.7	0	205	0.54	1.004/
70	395	60	5,760	9.7	0	240	0.00	0.32
71	355	15	5,760	9.9	0	510	0.00	0.45
72	317	-61	5,760	10.2	0	181	0.00	0.80
73	285	-49	5,760	10.5	0	198	0.00	0.22
74	282	-18	5,760	11.5	0	201	0.00	0.25
75	238	- 151	5,760	12. 9	0	208	0.00	0.37
76	250	-200	5,760	12.6	0	214	0.00	0.20
77	240	-1 85	5,760	12.4	12,650	226	0.00	0.68
7 8	340	-100	5,760	9.2	86,400	229	0.00	0.95
7 9	250	-190	5,760	11.3	16,950	224	0.00	0.49
80	252	-149	5,760	12.0	0	228	0.00	0.66
81	287	-128	5,760	12.6	0	227	0.00	0.63
82	257	-186	5,760	14.0	0	235	0.00	0.70

SELECTED DATA FROM UNCONFINED AQUIFER NODES DATA BASE FOR RUN 'A' May 30, 1974

						····		
•	Eleva	ation .		:Specific	:Moisture: : Defi- :	Initial	:Subsi-	Fraction
Node.	(fe	eet)	Area		·ciencul/.	Water	·dance2/	Pumped
No.		:	(acres)	:(percent)	: (acre- :	Elevation	(feet)	in Upper,
:	Top	Bottom.		:	feet):	(feet)	:	Layer3/
					·			
83	295	- 95	5,760	12.1	0	210	0.00	0.35
84	312	-107	5,760	10.5	0	174	0.00	0.65
85	337	- 68	5,760	10.4	0	191	0.00	0.80
86	363	-37	5,760	10.6	0	211	0.00	0.70
87	412	40	5,760	10.0	0	240	0.00	0.50
88	440	-1,960	5,760	8.9	0	209	0.44	$\frac{1.004}{4}$
89	640	-1,560	5,760	10.6	0	250 21.5	0.35	1.004/
9 1	700 510	-1,400 -2,390	5,760 5,760	12.1 11.3	0	245 106	0.11 0.34	$1.00\frac{4}{4}$
92	378	78	5,760	11.4	0	196 281	0.00	1.00 <u>4</u> / 0.23
93 94	354	-40	5,760	12.0	0	248	0.00	0.23
9 5	333	- 56	5,760	12.3	0	231	0.00	0.77
96	318	-1	5,760	11.6	0	201	0.00	0.60
97	301	-1 05	5,760	11.5	0	200	0.00	0.50
98	270	-180	5,760	12.0	Ö	224	0.00	0.75
99	270	-1 56	5,760	12.5	ŏ	227	0.00	0.63
100	247	-149	5,760	13.0	ŏ	232	0.00	0.69
101	247	-1 93	5,760	13.6	800	228	0.00	0.80
102	280	-120	5,760	11.9	22,050	235	0.00	0.95
103	265	-195	5,760	13.6	18,850	230	0.00	0.95
104	263	-147	5,760	15.5	640	228	0.00	o.8ó
105	271	-161	5,760	14.0	0	237	0.00	0.60
106	289	- 76	5,760	13.1	0	217	0.00	0.55
107	289	-123	5,760	12.7	0	211	0.00	0.90
108	308	-112	5,760	13.1	0	222	0.00	0.80
109	325	-108	5,760	12.9	0	230	0.00	0.96
110	336	-104	5,760	13.0	0	260	0.00	0.90
111	362	62	5,760	13.1	0	292	0.00	0.75
112	400	150	5,760	12.7	0	325	0.00	0.50,
113	440	-2, 160	5,760	12.8	0	261	0.34	$1.00\frac{4}{5}$
114	450	-1,250	5,760	13.3	0	331	0.08	$1.00\frac{4}{5}$
115	550	- 350	5,760	13.2	0	370	0.00	1.004
	1,020	445	6,898	13.0	0	629	0.00	1.004/
117	835	-100	4,538	12.7	0	608	0.00	1.004/
118	815	-480	4,498	12.7	0	453	0.20	$1.00\frac{4}{1}$
120	540	-1,180	6,803	13.3	0	250	0.42	1.004
121	420	-1,780	5,760	16.7	0	290	0.41	1.004/
122	400	180	5,760	16.8	0	358	0.00	0.62
123	380	130	5,760	16.9	0	331	0.00	0.65
124	360	0	5,760	18.1	0	304	0.00	1.00
125	340	-120	5,760	16.9	0	271	0.00	0.90

SELECTED DATA FROM UNCONFINED AQUIFER NODES DATA BASE FOR RUN 'A' May 30, 1974

:			:	:	:Moisture	•	:	:
:		ration		:Specific	: Defi-	. Initial	:Subsi-	Fraction
Node.	(1	eet)	Area	: Yield	:ciency1/	Water	:dence2/	Pumped
No.		· D - d-d	(acres)	:(percent)	: (acre-	Elevation	a:(feet)	• TH OPPER
:	Top	Bottom		<u>:</u>	: feet)	(feet)	:	Layer3/
126	323	-37	5,760	15.1	0	244	0.00	0.95
127	308	- 76	5,760	15.0	ŏ	227	0.00	0.99
128	296	- 69	5,760	14.1	Ō	233	0.00	0.99
12 9	277	- 98	5,760	14.0	0	236	0.00	0.85
13Ó	270	- 155	5,760	15.6	7,900	239	0.00	0.95
131	290	-130	5,760	14.1	39,400	238	0.00	0.85
132	500	-140	4,500	13.3	7,600	245	0.00	0.90
133	290	-1 90	6,610	15.1	6 , 750	544	0.00	0.88
134	290	-90	5,760	15.2	2,050	248	0.00	0.98
135	302	-178	5,760	15.1	0	262	0.00	0.80
136	320	-100	5,760	16.1	0	277	0.00	0.95
137	337	- 69	5,760	18.1	0	312	0.00	0.95
138	356	-29	5,760	19.5	0	323	0.00	0.95
139	370	-60	5,760	18.6	0	325	0.00	0.90
140	378	-22	5,760	18.6	0	314	0.00	0.90
141	378	143	5,760	16.5	0	307	0.00	0.38
142	380 445	-424	4,655	14.4	0	266	0.85	1.004/
143 144	-	-255 -180	5,894	13.9 14.2	0	232	0.67	1.004/
144	520 642	-262	5,570	14.2	0	229	0.62 0.30	1.001
146	640	-202 -40	5,900 5,025	14.9 15.0	0	215 223	0.30	1.004
147	520	-280	5,880	16.7	0	210	0.40	1.004/
148	505	- 895	6,500	15.5	0	212	0.76	1.004/
149	435	-1,16 5	5,435	14.8	ő	226	0.99	1.004
150	366	-12	5,670	14.6	ő	260	0.00	0.50
151	359	-81	5,760	16.7	Ö	305	0.00	0.84
152	352	-7 8	5,760	19.2	Ö	300	0.00	0.95
153	352	-48	5,760	18.7	Ō	301	0.00	0.95
154	338	-77	5,760	18.5	Ō	307	0.00	0.65
155	324	-7 8	5,760	18.2	0	304	0.00	0.95
156	314	-76	5,760	17.8	0	283	0.00	0.56
157	300	-80	5,680	15.1	5,600	260	0.00	0.96
158	490	-60	4,800	11.5	2,400	260	0.00	0.95
15 9	300	-135	5,440	13.0	12,800	265	0.00	0.60
160	297	-283	5,760	14.5	0	270	0.00	0.93
161	307	-268	5,760	16.1	0	276	0.00	0.95
162	318	-227	5,760	16.6	0	284	0.00	0.95
163	331	-194	5,760	16.9	0	289	0.00	0.99
164	335	-103	5,760	16.9	0	283	0.00	0.99
165	338	-88	5,760	16.3	0	301	0.00	0.85
166	362	-14	5,760	14.5	0	29 9	0.00	0.40

SELECTED DATA FROM UNCONFINED AQUIFER NODES DATA BASE FOR RUN 'A' May 30, 1974

			•	:	:Moisture:)	:	•
:		ration		:Specific	: Defi=/:	Initial	:Subsia	Fraction
Node.	t)	feet)	Area	· Vield	· ciancial/.	Water	·danca=/	Pumped
No.		:	(acres)	: (percent)	: (acre- :	Elevation	n:(feet)	in Upper
:	Top	Bottom	<u> </u>	:	: feet):	(feet)	<u>:</u>	Layer3/
167	426	106	5,760	13.5	0	293	0.00	0.15, /
168	484	-816	6,300	15.1	0	209	0.60	1.004/
169	435	35	4,680	14.4	0	274	0.00	0.20
170	384	-66	6,980	13.4	0	270	0.00	0.40
171	335	50	5,760	13.6	0	292	0.00	0.20
172	310	- 55	5,760	13.9	0	302	0.00	0.40
173	304	-33	5,760	15.7	0	292	0.00	0.74
174	298	-172	5,760	15.6	0	273	0.00	0.90
175	295	-215	5,760	14.7	0	263	0.00	0.50
176	290	- 260	5,760	12.1	0	259	0.00	0.75
1 7 7	284	- 276	5,760	9.6	0	256	0.00	0.47
178	290	-260	5,760	9.6	320	27 5	0.00	0.95
179	315	-150	6,720	9.9	640	275	0.00	0.95
180	290	-250	5,760	12.0	0	286	0.00	0.80
181	290	-131	5,760	10.9	0	279	0.00	0.30
182	290	-330	5,760	13.6	0	280	0.00	0.90
183	290	-350	5,760	12.3	0	278	0.00	0.90
184	290	-135	5,760	12.6	0	265	0.00	0.60
185	283	-137	5,760	13.1	0	241	0.00	0.95
186	286	-149	5,760	12.1	0	282	0.00	0.80
187	330	-78	6,950	12.4	0	260	0.00	0.38
188	412	- 58	7,035	14.4	0	251	0.00	0.33
189	405	-100	4,850	14.5	0	233	0.00	0.20,
191	570	-130	5,600	12.3	0	270	0.00	1.004/,
192	560	-458	5,670	14.9	0	235	0.65	1.004/
193	435	- 45	5,900	13.4	0	270	0.00	0.20
194	390	-47	4,510	14.2	0	240	0.00	0.30
195	365	- 75	6,525	11.5	0	263	0.00	0.20
196	285	- 95	5,815	9.6	0	268	0.00	0.45
1 9 7	310	-110	5,755	10.9	0	278	0.00	0.36
198	352	-148	5,760	12.5	7,200	290	0.00	0.25
199	362	- 238	5,760	11.7	44,000	275	0.00	1.00
200	360	-160	5,760	12.1	45,000	285	0.00	0.50
201	395	-175	7,680	12.1	57,600	27 9	0.00	0.58
202	585	135	6,750	12.2	188,000	290	0.00	0.15
203	525	35	6,665	13.0	109,000	280	0.00	0.30
204	520	-1 25	6,660	14.5	101,000	280	0.00	0.20
205	495	-125	6,820	15.5	59,000	275	0.00	0.25
206	460	-190	6,600	10.4	93,000	270	0.00	0.30
207	365	-23 5	5,080	9.7	30,950	275	0.00	0.20
208	500	0	6,670	12.9	4,200	272	0.00	0.10

SELECTED DATA FROM UNCONFINED AQUIFER NODES DATA BASE FOR RUN 'A' May 30, 1974

Node No.	Elevation (feet)		: Specific Area : Yield (acres) (means)		:ciency Water :d		: :Subsi- :dence2/	dence2/: Pumped	
	Top	Bottom	(acres)	:(percent)	: (acre- : feet)	(feet)	1:(feet) :	Layer3/	
209	480	10	5,550	12.0	0	263	0.00	0.15. ,	
210	650	- 950	6,070	12.9	0	265	0.48	1.00^{4}	
211	655	-305	5,390	12.5	0	270	0.20	1.004/,	
212	732	- 252	7,540	14.7	0	281	0.00	$1.00\frac{4}{5}$	
213	790	-610	7,010	15.5	0	285	0.10	$1.00\frac{4}{5}$	
214	760	-442	8,510	15.4	9,600	283	0.30	$1.00^{4/}$	
215	430	-140	6,005	10.5	75,300	290	0.00	0.15	
216	700	-130	7,020	13.2	93,000	285	0.00	0.90	
217	850	-80	7,545	12.2	60,000	285	0.00	0.90	
218	940	- 50	7,550	12.3	101,000	2 85	0.00	0.90	
219	975	10	7,350	13.3	109,000	285	0.00	0.90	
220	975	50	5,735	13.2	95,000	290	0.00	0.90	

^{1/} Initial moisture deficiency in node.
2/ Subsidence over 15-year period 1958-72.
3/ Fraction of total amount pumped.
4/ Modeled as single-layer area.

TABLE 34

SELECTED DATA FROM CONFINED AQUIFER NODES
DATA BASE FOR RUN 'A'
May 30, 1974

	•			Storage :	Initial	•	:Fraction
Node	Elev	ation .	Area :	Coeffi-:	Water	Subsi-/	: Pumped
No.	(f	eet)	(acres)		Elevation	,.dence±′	in Lower
	: Top :	Bottom		(percent):	(feet)	(feet)	: Layer2/
	······································			\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			
301	-657	-1,077	5,760	0.03	150	0.19	0.05
302	-853	-1,353	5,760	0.03	150	0.44	0.05
303	-685	-1,185	5,760	0.03	145	0.70	0.05
304	-452	-972	5,760	0.03	126	1.02	0.42
305	- 332	- 932	5,760	0.03	119	2.02	0.56
306	-183	- 783	5,760	0.03	112	2.30	0.65
307	-135	- 875	5,760	0.03	108	2.49	0.65
308	-84 -118	-984	5,760	0.03	117 125	2.47 2.82	0.80 0.80
309	-110 -147	-1,278 -1,567	5,760 5,760	0.03 0.03	139	2.77	0.60
310 311	-85	-1,645	5,760	0.03	160	1.57	0.70
312	-20	-1,400	5,760	0.09	170	0.92	0.75
313	-20 78	-1,042	5,760	0.09	162	0.52	0.80
318	67	-1,133	5,760	0.03	167	0.50	0.60
319	-23	-1,5 03	5,760	0.03	171	0.74	0.69
320	- 63	-1,523	5,760	0.09	162	1.52	0.69
321	- 92	-1,432	5,760	0.03	147	2.37	0.70
322	- 98	-1,218	5,760	0.03	136	2.67	0.65
323	-103	-1,143	5,760	0.03	115	2.33	0.70
324	-100	-940	5,760	0.03	120	1.96	0.30
325	-1 58	- 838	5,760	0.03	128	2.05	0.68
326	-27 5	- 775	5,760	0.03	135	1.62	0.60
327	-301	-821	5,760	0.03	144	0.67	0.30
328	- 595	-1,075	5,760	0.03	150	0.52	0.35
329	- 455	-1,015	5,125	0.03	160	0.48	0.05
330	-388	-848	6,444	0.03	145	0.41	0.05
331	- 369	-90 9	5,760	0.03	143	0.64	0.10
332	-108	- 668	5,760	0.03	135	0.76	0.20
333	-133	- 633	5 , 760	0.03	135	1.33	0.50
334	-130	-730 -860	5,760 5,760	0.03	134	1.85 2.10	0.50 0.65
335 336	-120 -90	-1,090	5,760 5,760	0.03 0.03	139 1 5 0	2.22	0.70
337	-70	-1,210	5,760	0.03	159	2.09	0.75
338	-42	-1,482	5,760	0.03	174	1.22	0.78
339	11	-1,509	5,760	0.03	203	0.62	0.55
340	95	-1,00 5	5,760	0.03	147	0.58	0.65
346	34	-1,326	5,760	0.03	202	0.53	0.70
347	23	-1,177	5,760	0.09	185	0.97	0.65
348	- 52	-1,152	5,760	0.03	166	1.41	0.65
349	-112	-1,072	5,760	0.03	153	1.48	0.60
350	-152	- 752	5,760	0.03	134	1.43	0.60
351	-140	-620	5,760	0.03	125	1.38	0.80
~/-							

TABLE 34 (continued)

SELECTED DATA FROM CONFINED AQUIFER NODES DATA BASE FOR RUN 'A' May 30, 1974

	· Ele	vation		Storage		Subsi-/	Fraction
Node	•	feet)	: Area :	Coeffi-	: Water	•	Pumped
No.	: <u>`</u>		(acres):		:Elevation	(feet)	in Lower
	: Top	Bottom :	<u> </u>	(percent)	: (feet)	:(1000)	Layer ²
352	-100	-520	5,760	0.03	115	1.01	0.81
353	-190	- 590	5,760	0.03	135	0.44	0.05
354	-372	- 772	7,144	0.03	150	0.65	0.05
355	-195	- 595	5,760	0.03	165	0.40	0.20
356	- 265	- 665	5,760	0.03	140	0.37	0.21
357	-230	-630	5,760	0.03	120	0.66	0.55
358	-81	-581	5,760	0.03	117	0.64	0.70
359	-81	-681	5,760	0.03	128	0.79	0.67
360	- 58	-918	5,760	0.09	153	0.69	0.70
361	- 9	-1,089	5,760	0.03	162	0.82	0.60
362	40	-1,100	5,760	0.03	185	0.77	0.65
363	88	-1,252	5 ,7 60	0.03	196	0.54	0.50
370	25	-1,195	5,760	0.09	204	0.39	0.68
371	- 55	-1, 095	5,760	0.03	188	0.44	0.55
372	-101	-1,041	5,760	0.09	170	0.59	0.20
373	-60	- 760	5,760	0.03	134	0.54	0.78
374	- 38	- 438	5,760	0.03	128	0.74	0.75
375	-212	-572	5,760	0.03	158	0.79	0.63
376	-25 0	- 690	5,760	0.03	145	0.74	0.80
377	-225	- 665	5,760	0.03	165	0.45	0.32
378	-125	- 465	5,760	0.03	175	0.30	0.05
379	-230	-630	5,760	0.03	180	0.26	0.51
380	-193	- 633	5,760	0.03	170	0.56	0.34
381	-158	- 498	5,760	0.03	145	0.67	0.37
382	-214	-734	5 ,7 60	0.03	140	0.66	0.30
383 384	-145	- 505	5,760	0.03	143	0.49	0.65
385	-138 -115	- 538 - 855	5,760 5,760	0 .0 9 0 .0 9	150 185	0.38 0.33	0.35 0.20
386	-81	-1,081	5 , 760	0.03	197	0.28	0.30
387	0	-1,438	5,760	0.03	210	0.28	0.50
393	3	-2,522	5 , 760	0.09	219	0.39	0.77
394	-100	-1,596	5,760	0.03	220	0.21	0.49
395	-112	-1,072	5,760	0.03	200	0.26	0.23
396	-82	-782	5,760	0.03	188	0.26	0.40
397	-138	-558	5,760	0.03	175	0.32	0.50
398	-208	-728	5,760	0.03	173	0.36	0.25
399	-180	-480	5,760	0.03	175	0.60	0.37
400	-173	-663	5,760	0.03	180	0.46	0.31
401	-223	-643	5,760	0.03	185	0.26	0.20
402	-190	-550	5,760	0.03	190	0.21	0.05
403	-240	-780	5,760	0.03	210	0.15	0.05
404	-197	-777	5,760	0.03	205	0.22	0.20

SELECTED DATA FROM CONFINED AQUIFER NODES DATA BASE FOR RUN 'A' May 30, 1974

	•	······································		Ctonego :	Initial	•	Fraction
Node		ation :	Area :	Storage: Coeffi-:	Weter	.Sub si- ,	Fraction Pumped
No.	(f	eet)	(acres):	cient :	nacer Taration	************	in Lower
110.	Top:	Bottom:	` '	(percent):	(feet)		Layer2
	. тор .	boccom .	 	(percent).	(reed)	• `	: Layer =/
405	-179	- 679	5 , 760	0.03	176	0.40	0.40
406	-111	-551	5,760	0.03	193	0.34	0.45
407	- 163	-603	5 ,7 60	0.03	201	0.34	0.10
408	-150	- 690	5,760	0.03	203	0.34	0.20
409	-132	-972	5,760	0.03	216	0.34	0.04
410	-130	-1,863	5,760	0.03	225	0.35	0.10
411	- 38	- 2,538	5,760	0.09	234	0.35	0.25
412	100	-2,900	5,760	0.12	265	0.35	0.50
422	130	-3,000	5,760	0.12	307	0.38	0.38
423	30	-3,020	5,760	0.09	290	0.36	0.35
424	-110	-2,040	5,760	0.09	270	0.42	0.00
425	-130	-1,650	5,760	0.09	242	0.40	0.10
426	-134	- 894	5,760	0.09	218	0.34	0.05
427	-117	- 977	5,760	0.03	230	0.31	0.01
428	- 99	- 639	5,760	0.03	215	0.20	0.01
429	-173	- 673	5,760	0.03	214	0.20	0.15
430	-195	- 755	5,760	0.09	225	0.15	0.05
431	-160	-880	5,760	0.09	230	0.15	0.15
432	-170	-400	4,500	0.02	230	0.10	0.10
433	-210	-510	6,610	0.03	235	0.14	0.12
434	-180	- 520	5,760	0.03	237	0.26	0.02
435	-198	- 738	5,760	0.03	238	0.31	0.20
436	-130	- 970	5 , 760	0.03	250	0.37	0.05
437	- 93	-1,253	5,760 5,760	0.03	268	0.42 0.42	0.05
438 439	- 54	-1,934	5,760 5,760	0.09	290 288		0.05
439	-110	-3,530	5,760 5,760	0.03	285	0.37 0.42	0.10
441	- 52 18	-3,622 -1,722	5,760 5,760	0.03 0.09	2 69	0.53	0.10 0.62
450	- 35	-1,535	5,670	0.09	238	1.36	0.50
451	-121	-2,241	5,760	0.03	260	1.12	0.16
452	-108	-3,448	5,760	0.03	270	0.65	0.05
453	- 98	-3,0 98	5,760	0.03	275	0.59	0.05
454	-172	-2,612	5,760	0.09	280	0.54	0.35
455	-176	-1,676	5,760	0.09	270	0.48	0.05
456	-126	-1,286	5,760	0.03	255	0.43	0.44
457	-150	-890	5,680	0.03	240	0.38	0.04
458	-120	-450	4,800	0.03	238	0.17	0.05
459	-200	-600	5,440	0.03	231	0.21	0.40
460	-348	-948	5,760	0.03	240	0.36	0.07
461	- 303	-1, 683	5,760	0.09	240	0.58	0.05
462	-272	-2,072	5,760	0.09	250	0.69	0.05
463	-2 09	-2,369	5,760	0.03	250	0.69	0.01
_	_	,- ,	'	•			

SELECTED DATA FROM CONFINED AQUIFER NODES DATA BASE FOR RUN 'A' May 30, 1974

 				. Chamana i	Tuddial	. <u></u>	. 7
Node		vation		: Storage : Coeffi- :	Initial	: Subsi-,	:Fraction
No.	• (feet)	Area (acres)		Water Elevation	* 1 /	: Pumped :in Lower
110.	Top	: Bottom :		(percent):	(feet)	••/	: Layer2
	. 10p	. DO 0 0 0 m .		. (perceno).	(1660)	• `	: nayer_
464	-122	-2,962	5,760	0.03	250	0.85	0.01
465	- 58	-2,618	5,760	0.12	240	1.46	0.15
466	-43	-1,943	5,760	0.03	220	2.12	0.60
467	76	-1,464	5,760	0.09	195	1.40	0.85
469	-1 5	-1,215	4,680	0.11	190	1.05	0.80
470	-91	-1,311	6,980	0.10	205	2.07	0.60
471	- 5	-1,465	5,760	0.09	200	2.71	0.80
472	- 95	-1,895	5,760	0.03	210	2.55	0.60
473	-171	-1,691	5,760	0.09	230	1.48	0.26
474	-203	-1,503	5,760	0.03	240	1.01	0.10
475	- 260	-1,560	5 , 760	0.03	240	0.91	0.50
476 477	-300	-1,800	5 , 760	0.03	230	0.80	0.25
478	-311 -340	-1,111	5,760 5,760	0.03	220 220	0.46	0.53
479	-245	-1,000 -785	5,760 6,720	0.03 0.03	240	0.16 0.00	0.05 0.05
480	-310	-1,030	5,760	0.03	200	0.22	0.20
481	-260	-1,200	5 , 760	0.09	200	0.70	0.70
482	- 375	-1,315	5,760	0.09	200	1.01	0.10
483	-380	-1,500	5,760	0.03	210	1.44	0.10
484	-210	-1,410	5,760	0.03	210	2.07	0.40
485	-207	-1,307	5,760	0.09	190	3.01	0.05
486	-204	-1,204	5,760	0.09	180	3.57	0.20
487	-128	-1,228	6,950	0.03	170	3.18	0.62
488	-78	-1,378	7,035	0.03	160	1.50	0.67
489	-127	-1,195	4,850	0.10	180	0.89	0.80
493	-82	-1,762	5,900	0.10	140	1.78	0.80
494	-138	-1,518	4,510	0.11	130	3.04	0.70
495	-185	-2,125	6,525	0.09	140	3.71	0.80
496	- 205	-1,465	5,815	0.03	150	4.34	0.55
497	- 238	-1,198	5,755	0.03	150	3.95	0.64
498	-228	-1,448	5,760	0.03	150	2.41	0.75
499	-286	-1,126	5,760	0.09	145	1.32	0.00
500	-280	-1,020	5,760	0.03	150	0.86	0.50
501	-215	- 915	7,680	0.03	155	0.37	0.42
502	25 65	-41 5	6,750	0.03	150	0.21	0.85
503	- 65	- 985	6,665	0.03	140	0.40	0.70 0.80
504 505	-155	-1,595	6,660	0.03	115	0.53 1.10	
505 506	-155 -210	-1,615	6,820 6,600	0.03 0.03	105 105	3.09	0.75 0.70
507	-305	-1,350 -1,385	5,080	0.03	100	4.12	0.70
507 508	-305	-2,010	6,670	0.10	100	2.09	0.90
509	-30 -30	-2,630	•	0.03	110	1.79	0.90
JU9	-30	-2,030	5,550	0.03	110	1.19	0.07

TABLE 34 (continued)

SELECTED DATA FROM CONFINED AQUIFER NODES DATA BASE FOR RUN 'A' May 30, 1974

Node		vation feet)	Area (acres)	•	: Initial : Water :Elevation	Subsi-	:Fraction : Pumped :in Lower
	: Top	: Bottom	<u> </u>	:(percent)	: (feet)	(feet)	: Layer2/
515	-180	-1,780	6,005	0.08	110	2.60	0.85
516	-170	-3,000	7,020	0.03	110	0.59	0.10
517	-130	-2,360	7,545	0.03	120	0.27	0.10
518	-110	-1,460	7,550	0.09	120	0.21	0.10
519	-60	-1,220	7,350	0.03	130	0.16	0.10
520	-20	-1,000	5,735	0.03	140	0.07	0.10

^{1/} Subsidence over 15-year period 1958-72. 2/ Fraction of total amount pumped.

TABLE 35

UNCONFINED LAYER NODE-TO-NODE FLOW PATH DATA
DATA BASE FOR RUN 'A'
May 30, 1974

Pe	ath :				:	Perme-	: Conduc-
	ween :		Flow Path	Dimensio	on s	ability	: tivity
	Node :	Top:	Bottom	: Width	: Length :		: (af-ft/
No.		(feet):		: (feet)	: (feet) :	`yr)	: $\hat{\mathbf{f}}\mathbf{t}^2$ -yr)
		·					
1	2,	282.5	-677.5	15,900	15,900	0.224	215.2
1	2211/	284.5	-701.0	16,000	16,200	0.257	250.0
2	3	231.0	-656.5	15,800	15,900	0.179	158.2
2	2 9_ ,	271.0	-494.0	16,200	15,800	0.280	21 9.8
2	2221/	233.0	-801.5	16,100	16,400	0.224	227.5
3	4	216.5	-461.0	15,900	16,400	0.146	95.7
2 3 3 4	28, ,	220.0	-487.5	16,100	16,300	0.143	100.0
3	223 <u>1</u> /	211.0	-680.0	16,300	16,300	0.112	100.0
	5	218.0	-297.0	16,400	16,500	0.191	97.5
4	27, /	221.0	-281.5	16,300	15,800	0.096	50.0
4	2241	213.0	-451.0	16,300	16,400	0.151	99 .7
5	6	217.5	-157.5	16,100	16,000	0.133	50.0
5 5 5	26,	219.0	-223.0	16,500	16,200	0.155	70.0
5	2251/	212.5	-296.0	16,700	16,300	0.157	81.8
6	7	216.0	-84.0	16,100	16,200	0.336	100.3
6	25,	219.5	- 95.5	16,400	16,000	0.336	108.6
6	2261/	213.0	-186.5	16,200	16,300	0.078	31.0
7	8	215.5	-54.5	16,600	15,700	0.426	121.6
7	24,/	217.5	-53.0	15,900	16,000	0.504	135.6
7	227	211.0	-137.5	15,900	16,600	0.336	112.2
8 8 8	9	221.5	1.5	16,000	16,200	0.322	70.0
g	23,	216.5	-38.5	16,000	15,900	0.336	86.3
	2281/	210.0	-82.0	15,900	16,400	0.392	111.0
9 9	10	235.0	-15.0	16,100	16,000	0.060	15.0
9	22	234.5	-3.0	16,400	16,000	0.213	51.8
9	2291	221.0	- 76.5	16,300	15,600	0.179	55.6
10	11	254.0	-54.0	16,100	16,400	0.397	120.0
10	21/	253.0	-42.0	16,400	16,200	0.067	20.0
10	2301/	239.0	-108.5	16,300	16,100	0.057	20.0
11	12	287.5	19.5	16,000	16,600	0.077	20.0
11	201/	276.0	-24.5	15,900	16,000	0.268	80.0
11	2311/	265.5	-80.5	15,800	16,000	0.234	80.0
12	13	339.0	94.0	15,800	15,600	0.201	50.0
12	191/	308.5	58.5	16,300	16,300	0.080	20.0
12	2321	307.5	30.0	16,200	15,500	0.448	130.0
13	14	400.0	130.0	15,800	15,900	0.037	10.0
13	18	367.5	100.0	16,100	16,100	0.112	30.0
13	2331	370.0	69.0	16,100	16,100	0.233	70.0
14	15	518.5	-581.5	15,900	16,000	0.183	200.0
14	17	468.0	-783.5	16,300	16,200	0.079	100.0
14	2341/	453.5	-744.0	16,100	15,800	0.287	350.0
15	16	587.5	-392.5	15,800	16,100	0.104	100.0

TABLE 35 (continued)

Pa		a	Tow Path	Dimension	:		: Conduc-
Betw					•	ability	: tivity
	Node:	Top:			: Length :	(/	: (af-ft/
No.:	No.:	(feet) :	(feet)	: (feet)	: (feet) :	yr)	: ft ² -yr)
16	2351/	536.0	- 437•5	27 700	35 000	0 077	100.0
15 16	237			21,100	15,900	0.077	
	17	537.0	-594.5 -186.5	16,100	16,000	0.004	5 . 0
16	42	625.0		16,000	15,800	0.061	50.0
17	18	420.0	130.0	16,300	16,300	0.034	10.0
17	41	509.5	-692.0	16,200	15,800	0.057	70.0 100.0
18	19	337.0	64.5	16,100	16,100	0.367	
18	40	383.5	113.5	16,000	15,800	0.073	20.0
19	20	297.0	14.5	16,100	16,200	0.748	210.0
19	39	325.0	35.0	16,400	16,000	0.291	86.6
20	21	275.0	-12.5	16,000	16,100	0.053	15.0
20	38	301.0	6.0	16,000	15,900	0.336	99.8
21	22	252.5	-30.0	16,500	16,400	0.281	80.0
21	37	271.5	-5.0	16,300	16,000	0.320	90.0
22	23	229.5	-43.0	16,100	16,000	0.219	60.0
22	36	248.5	-17.0	16,400	16,100	0.269	72.8
23	24	218.5	-37.0	16,100	15,800	0.448	116.7
23	35	226.0	-39.0	16,100	16,200	0.266	70.0
24	25	221.0	-64.5	16,100	16,200	0.352	100.0
24	34	222.5	-28.0	16,000	16,200	0.202	50.0
25	26	221.0	- 161 . 5	16,100	16,300	0.238	90.0
25	33	224.5	- 72.5	16,300	16,500	0.560	164.4
26	27	222.0	-208.0	16,000	16,300	0.047	20.0
26	32	228.5	-101.5	16,400	16,400	0.212	70.0
27	28	224.5	-308.0	16,100	16,300	0.513	270.0
27	31	227.5	-222.5	16,300	16,400	0.425	190.0
28	29	260.0	- 325.0	16,100	15,900	0.381	225.8
28	30	243.5	-326.5	16,200	16,100	0.336	192.9
29	30	278.5	- 236.5	5,100	22,800	0.347	40.0
30	31	246.5	-241.0	16,200	16,100	0.460	225.4
30	54	255.0	-245.0	8,500	22,600	0.325	61.1
31	32	234.0	-116.0	16,400	16,400	0.171	60.0
31	54	239.5	-248.0	16,100	15,500	0.549	278.1
32	33	232.0	-12.5	16,300	16,200	0.285	70.c
32	53	236.0	- 36.5	16,400	15,800	0.212	60.0
33	34	226.0	-36.0	16,400	16,400	0.458	120.0
33	52	231.0	11.5	16,300	16,000	0.224	50.0
34	35	230.0	-30.0	16,400	16,000	0.594	158.3
34	51	232.5	-66.0	16,100	16 , 500	0.172	50.0
35	36	245.0	-13.0	16,100	16,000	0.385	100.0
35	50	241.5	-71.0	15,900	16,400	0.527	159.6
36	37	267.5	8.0	16,300	16,300	0.426	110.5
36	49	261.5	-21.5	16,300	16,400	0.291	82.0

TABLE 35 (continued)

	at	h	:								:	Perme-	:	Conduc-
Bet			:		F	low Path	D:	imension	າຣ		:	ability	:	tivity
Node		Node	-: ⁻	Top	:	Bottom	:	Width	:	Length	-:	(af/ft ² -	:	(af-ft/
No.	:	No.	:	(feet)	:	(feet)	:	(feet)	:	(feet)	:	yr)	:	ft ² -yr)
														
37		38		297.5		13.5		16,100		16,200		0.071		20.0
37		48		286.5		-5.0		16,400		16,000		0.067		20.0
38		39		329.0		26.5		15,900		16,000		0.998		300.0
38		47		324.0		26.5		16,200		16,200		0.303		90.0
39		40		371.5		84.0		15,900		16,500		0.180		50.0
39		46		357.5		57•5		16,400		16,100		0.295		90.0
40		41		470.0		130.0		15,900		16,200		0.060		20.0
40		45		400.0		150.0		16,100		15,900		0.158		40.0
41		42		597.5		-284.0		15,900		15,800		0.006		5.0
41		44		547.5		-577.5		16,400		16,000		0.087		100.0
42		43		700.0		- 56 . 5		15,800		16,000		0.135		100.5
43		44		650.0		-350.0		16,100		16,100		0.005		5.0
43		66		725.0		-333.0		15,800		16,100		0.048		50.0
44		45		480.0		-845.0		16,300		16,200		0.075		100.0
44		65		570.0		- 957•5		16,500		16,100		0.096		150.0
45		46		390.0		130.0		16,200		16,500		0.588		150.0
45		64		422.5		-1,177.5		16,300		16,400		0.224		356.5
46		47		352.5		57.5		16,400		15,900		0.560		170.5
46		63		380.0		92.0		16,300		16,100		0.069		20.0
47		48		313.0		8.0		16,300		16,100		0.259		80.0
47		62		341.5		51.5		16,100		16,100		0.241		70.0
48		49		280.5		-34.5		16,400		16,400		0.381		120.0
48		61		304.0		4.0		16,300		16,200		0.280		84.6
49		50		258.0		-79.5		16,100		16,000		0.177		60.0
49		60		275.0		-20.0		16,300		16,200		0.235		69.9 60.0
50		51		244.0		-107.0		16,000		15,800		0.169		176.9
50		59		256.0		-84.0		15,800		16,000		0.527		110.4
51		52		237.5		-18.5		16,000		15,800		0.426 0.549		181.6
51		58		252.0		- 74.5		16,100		15,900		0.549		60.0
52		53		235.0		-12. 5		15,800		16,200		0.249		70.0
52		57		240.0		-77.5		16,200		16,300 16,400		0.426		169.3
53		54		241.5		-168.5		15,900				0.504		196.8
53		56		235.0		-157.5		16,400		16,500		0.370		166.6
54		55 56		274.0		-193.5		15,900 16,600		16,500 16,300		0.437		200.3
55		56 78		267.5 320.0		-182.5		16,000		16,300		0.291		125.2
55 56				240.0		-117.5 -222.5		16,600		16,200		0.583		276.2
56 56		57		237.5		-207.5		16,500		16,200		0.370		167.7
57		77 58		254.5		-133.5		16,100		16,300		0.261		100.0
57		76		247.5		-207.5		16,300		16,000		0.482		223.4
58		59		264.0		-51.5		16,500		15,900		0.572		187.2
58		75		251.0		-101.5		16,100		16,200		0.285		100.0
)0		17						,		,		/		

TABLE 35 (continued)

	Path										.	Perme-	-	Conduc-
	tween		:]	Flow Path	D:	imensio	as		:	ability	:	tivity
	: Nod	_	: -	Top	:	Bottom	:	Width	-	Length	~:	7	:	(af-ft/
	: No		:	(feet)		(feet)	:		:	/	:	yr)	:	ft ² -yr)
110.	. 110	•	<u>.</u>	(1000)	•	(1000)	÷	(1000)	•	11000/	÷	<u> </u>	÷	10 317
59	60			273.0		-24.5		16,300		16,300		0.235		70.0
59	74			273.0		-34.5		15,800		15,900		0.460		140.4
60	61			298.5		18.5		16,100		16,100		0.269		75.3
60	73	ı		283.5		-23.5		16,400		16,200		0.381		118.5
61	62			332.5		47.5		16,000		16,400		0.360		100.0
61	72	:		316.0		-13.0		16,300		16,200		0.314		103.9
62	63			369.0		86.0		16,200		16,000		0.384		110.0
62	71			352.5		37.5		16,300		16,200		0.359		113.7
63	64			410.0		130.0		16,100		16,500		0.732		200.0
63	70	1		391.5		86.0		16,500		16,300		0.491		152.0
64	65			512.5		-1,290.0		16,100		16,400		0.226		400.0
64	69			442.5		-1,507.5		16,300		16,300		0.314		612.0
65	66	ı		645.0		-940.5		16,300		16,000		0.025		40.0
65	68	ı		537.5		-1,535.0		16,600		16,300		0.142		300.0
66	67			612.5		-920.5		15,800		16,400		0.415		612.6
67	68			505.0		-1,515.0		16,200		16,000		0.034		70.0
67	89			582.5		-1,417.5		15,800		15,900		0.050		100.0
68	69			467.5		-1,752.5		16,300		16,500		0.365		800.0
68	88			462.5		-1,857.5		16,600		15,900		0.103		250.0
69	70	ı		420.0		70.0		16,100		16,400		0.582		200.0
69	87			430.0		100.0		16,300		16,000		0.336		113.1
70	71			375.0		37.5		16,000		16,300		0.906		300.0
70	86	,		379.0		11.5		16,400		16,100		0.187		70.0
71	72	!		336.0		-23.0		15,900		16,500		0.578		200.0
71	85			346.0		-26.5		16,300		16,200		0.213		80.0
72	73			301.0		-55.0		15,900		15,900		0.370		131.7
72	84			314.5		-84.0		16,300		16,100		0.280		113.1
7 3	74			283.5		-33.5		15,700		16,300		0.164		50.0
73	83			290.0		-72.0		16,400		15,900		0.402		150.0
74	75			260.0		<u>-</u> 84.5		15,800		15,900		0.351		120.0
74	82			269.5		-102.0		15,800		16,000		0.136		50.0
75	76			244.0		-175.5		15,900		16,400		0.516		209.7
75	81			262.5		-139.5		16,200		15,600		0.617		257.4
76	77			245.0		-192.5		15,900		16,100		0.594		256.7
76	8c			251.0		-174.5		16,300		15,800		0.448		196.8
77	78			290.0		-142.5		15,800		16,200		0.560		236.4
77	79			245.0		-187.5		16,400		16,000		0.684		303.1
79	86			251.0		-169.5		15,800		16,100		0.538		222.0
79	102			265.0		-155.0		16,000		16,000		0.695		291.9
80	81			269.5		-138.5		16,000		16,100		0.538		218.2
80	101			249.5		-171.0		16,300		16,400		0.650		271.7
81	82			272.0		-157.0		15,900		16,000		0.673		286.7
	92	-		-10		->1.00		-/,/00		,,		13		

									
	ath :		Flow Path	Dimension	าต	:	Perme-	:	Conduc-
	ween :					_:	ability	:	tivity
	: Node :	Top :	Bottom	: Width	: Length	:	\/	:	(af-ft/
No.	: No.:	(feet):	(feet)	: (feet)	: (feet)	<u>:</u>	yr)	<u>:</u>	ft ² -yr)
81	100	267.0	-138.5	16,000	16,400		0.617		243.9
82	83	276.0	-140.5	16,000	16,000		0.120		50.0
82	99	263.5	-171.0	16,000	15,900		0.740		323.5
83	84	303.5	-101.0	16,000	16,100		0.249		100.0
83	98	282.5	-137.5	16,100	15,900		0.353		150.0
84	85	324.5	-87.5	16,300	16,600		0.494		200.0
84	97	306.5	-106.0	16,400	16,100		0.238		100.0
85	86	350.0	-52.5	16,100	16,200		0.700		280.0
85	96	327.5	-34.5	16,000	16,100		0.280		100.8
86	87	387.5	1.5	16,200	16,300		0.261		100.0
86	95	348.0	-46.5	16,400	16,300		0.572		226.9
87	8 8	420.0	110.0	16,100	16,200		0.162		50.0
87	94	383.0	0.0	16,100	16,400		0.532		200.0
88	89	540.0	-1,760.0	16,300	16,100		0.021		50.0
88	93	410.0	120.0	16,400	16,400		0.172		50.0
89	92	575.0	-1,975.0	16,100	16,600		0.020		50.0
91	92	605.0	-1,895.0	16,600	16,200		0.039		100.0
91	113	570.0	-1,780.0	16,200	16,000		0.000		1.0
92	93	440.0	180.0	16,600	16,100		0.187		50.0
92	112	390.0	210.0	16,000	16,400		0.285		50.0
93	94	366.0	19.0	16,600	16,200		0.844		300.0
93	111	370.0	70.0	16,300	16,400		0.335		100.0
94	95	343.5	-48.0	16,300	16,000		0.637		253.9
94	110	345.0	-72.0	15,900	15,800		0.238		100.0
95	96	325.5	-28.5	16,100	16,200		0.482		169.6
95	109	329.0	-82.0	16,400	15,800		0.234		100.0
96	97	309.5	-53.0	15,800	16,100		0.437		155.5
96	108	313.0	- 56 . 5	15,700	15,900		0.516		188.1
97	98	285.5	-142.5	15,700	16,200		0.241		100.0
97	107	295.0	-114.0	16,400	15,800		0.589		250.0
98	99	270.0	-168.0	15,800	16,100		0.639		274.6
98	106	279.5	-128.0	16,000	15,900		0.717		294.2
99	100	258.5	- 152.5	16,100	16,200		0.695		283.9
99	105	270.5	-158.5	16,300	16,100		0.576		250.0
100	101	247.0	-171.0	16,300	15,700		0.740		321.1
100	104	255.0	-148.0	15,800	16,000		0.852		339.0
101	102	263.5	-156.5	16,400	16,300		0.818		345.8
101	103	256.0	-194.0	16,200	15,800		0.802		370.0
103	104	264.0	-171.0	15,900	16,300		0.919		390.0
104	105	267.0	-154.0	16,100	16,100		0.897		377•5
104	131	276.5	-1 38.5	15,900	15,900		1.020		423.3
105	106	280.0	-118.5	16,400	16,200		0.099		40.0

TABLE 35 (continued)

	at		:			low Path	D:	imension	ns		:	Perme-	:	
		een Node	- : -	Top	:	Bottom		Width		Length	-:	ability (af/ft2-	:	tivity (af-ft/
No.				(feet)		(feet)	:			(feet)		yr)	•	ft ² -yr)
NO.	<u>:</u>	140.	<u>.</u>	(1660)	•	(Teec)	<u>.</u>	(1660)	÷	(Teec)	<u>:</u>	<u> </u>	<u>:</u>	IC -yr)
105		130		270.5		-158.0		16,200		16,300		0.897		381.9
106		107		289.0		- 99.5		16,600		16,500		0.256		100.0
106		129		283.0		-87.0		16,600		16,300		0.265		100.0
107		108		298.5		-117.5		16,500		16,300		0.583		245.5
107		128		292.5		-96.0	,	16,400		16,600		0.628		240.9
108		109		316.5		-110.0		16,300		16,300		0.234		100.0
108		127		308.0		-94.0		16,100		16,400		0.507		200.0
109		110		330.5		-106.0		16,300		16,400		0.231		100.0
109		126		324.0		- 72 . 5		16,600		16,400		0.617		247.4
110		111		349.0		-21.0		16,200		16,100		0.537		200.0
110		125		338.0		-112.0		16,100		16,200		0.358		160.0
111		112		381.0		106.0		16,300		16,500		1.104		300.0
111		124		361.0		31.0		16,500		15,800		0.290		100.0
112		113		420.0		200.0		16,100		16,000		0.090		20.0
112		123		390.0		140.0		16,200		15,800		1.053		270.0
113		114		445.0		-1,705.0		16,100		16,300		0.005		10.0
113		122		420.0		210.0		16,500		16,200		0.234		50.0
114		115		500.0		-800.0		16,400		16,300		1.070 0.473	•	1,400.0 900.0
114		121 120		435.0 545.0		-1,515.0		16,200 16,500		16,600 16,200		0.473		1.0
115 116		117		927.5		-765.0 172.5		16,450		13,700		0.552		500.0
116		146		830.0		202.5		18,700		12,200		0.031		30.0
117		118		825.0		-290.0		15,850		11,000		0.009		15.0
117		145		738.5		-181.0		16,100		12,500		0.017		20.0
118		144		667.5		-330.0		16,750		18,950		0.057		50.0
120		121		480.0		-1,480.0		16,300		16,300		0.003		5.0
120		142		460.0		-802.0		14,500		16,500		0.009		10.0
120		143		492.5		-717.5		10,800		18,000		0.372		270.0
121		122		410.0		200.0		16,500		16,400		0.095		20.0
121		141		400.0		190.0		16,200		16,300		0.719		150.0
122		123		390.0		155.0		16,300		16,300		0.426		100.0
122		140		389.0		79.0		16,500		16,500		1.613		500.0
123		124		370.0		65.0		16,200		16,300		0.693		210.0
123		139		375.0		35.0		16,200		16,100		1.812		620.0
124		125		350.0		-60.0		16,200		16,400		0.247		100.0
124		138		358.0		-14.5		16,500		16,200		0.817		310.0
125		126		331.5		-78.5		16,200		16,600		0.250		100.0
125		137		338.5		-94.5		16,200		16,200		0.231		100.0
126		127		315.5		-56.5		16,300		16,200		0.267		100.0
126		136		321.5		-68.5		16,600		16,300		0.252		100.0
127		128		302.0		-72.5		16,300		16,200		0.908		342.1
127		135		305.0		-127.0		16,300		16,200		0.690		300.0

	Pat	h	:								<u>:</u>	Perme-	:	Conduc-
Be ⁻	twe	een	:		F.	low Path	D:	imensior	18		:	ability	:	tivity
		Node	-;-	Top	:	Bottom	:	Width	:	Length	-:	(af/ft ² -	:	(af-ft/
No.	:	No.	:	(feet)	:	(feet)	:	(feet)	:	(feet)	:	yr)	:	ft ² -yr)
128		129		286.5		-83.5		16,300		16,300		0.270		100.0
128		134		293.0		-7 9.5		16,200		16,400		0.544		200.0
12 9		130		273.5		-126.5		16,200		16,300		0.377		150.0
129		133		283.5		-144.0		16,300		16,100		0.416		180.0
130		131		280.0		-142.5		16,400		16,200		1.020		436.3
130		132		380.0		-160.0		16,100		16,000		0.368		200.0
132		133		380.0		-180.0		16,400		16,100		0.351		200.0
133		134		290.0		-140.0		16,200		16,200		0.465		200.0
133		158		390.0		-125.0		7,200		22,500		0.243		40.0
134		135		296.0		-134.0		16,100		16,200		0.468		200.0
134		158		380.0		-80.0		16,300		15,800		0.316		150.0
135		136		311.0		-139.0		16,100		16,400		0.453		200.0
135		157		301.0		-129.0		16,200		16,400		0.471		200.0
136		137		328.5		-84.5		16,200		16,500		0.740		300.0
136		156		317.0		-88.0		16,600		16,300		1.455		600.0
137		138		346.5		-49.0		16,300		16,500		1.099		429.2
137		155		330.5		-73.5		16,200		16,700		1.786		700.0
138		139		363.0		-44.5		16,400		16,300		0.854		350.0
138		154		347.0		- 53.0		16,500		16,300		1.729		700.0
139		140		374.0		-41.0		16,300		16,400		1.091		450.0
139		153		361.0		-54.0		16,200		16,600		0.914		370.0
140		141		378.0		60.5		16,300		16,400		0.634		200.0
140		152		365.0		- 50.0		16,500		16,200		0.757		320.0
141		142		380.0		185.0		16,300		15,900		0.850		170.0
141		151		368.5		31.0		16,200		16,300		0.894		300.0
142		143		412.5		-339.5		15,900		10,000		0.084		100.0
142		150		370.0		180.0		12,300		16,300		0.349		50.0
143		144		482.5		-217.5		19,850		13,000		0.094		100.0
143		149		440.0		-710.0		6,250		19,850		0.166		60.0
143		150		400.0		120.0		4,250		19,400		0.617		37.8
144		145		581.0		-221.0		13,900		15,800		0.785		553.6
144		149		477.5		-672.5		14,500		12,400		0.841	:	1,130.6
145		146		641.0		-151.0		13,400		15,100		0.676		474.9
1 45		148		573.5		-578.5		12,500		18,400		0.63 9		500.0
145		149		538.5		-713.5		6,200		18,900		0.874		359.1
146		147		580.0		-160.0		17,700		12,900		0.367		400.0
146		148		572.5		-467.5		3,300		19,800		0.717		124.2
147		148		512.5		-587.5		11,700		15,300		0.238		200.0
147		168		502.0		-548.0		12,700		12,200		0.285		600.0
148		149		470.0		-1,030.0		4,100		21,000		0.427		125.0
148		167		460.0		170.0		16,500		17,200		0.072		20.0
148		168		494.5		- 855.5		3,100		17,900		0.807		188.7

	Path		:		10	Jan Dath				 _	:	Perme-	:	•
Be	tween		:		F.	low Path	ט:		18		:	ability	:	tivity
Node	: No	de	:	Top	:	Bottom	:	Width	:	Length	:	$(af/ft^2-$:	(af-ft/
No.	: No	٥.	:	(feet)	:	(feet)	:	(feet)	:	(feet)	:	yr)	:	$ft^2-yr)$
						_						-		
148	169	9		460.0		140.0		14,600		15,500		0.017		5.0
149	150			400.0		100.0		14,000		18,400		0.526		120.0
149	16'	7		470.0		160.0		16,800		14,600		0.449		160.0
150	15	1		362.5		-46.5		16,600		16,000		0.118		50.0
150	160	6		364.0		-13.0		16,400		16,000		0.129		50.0
151	15	2		355.5		-79.5		16,600		16,300		0.564		250.0
151	16	5		348.5		-84.5		16,100		16,200		0.697		300.0
152	15	3		352.0		-63.0		16,600		16,300		0.828		350.0
152	16			343.5		-90.5		16,600		16,400		0.683		300.0
153	15	4		345.0		-62.5		16,500		16,500		0.919		374.6
153	16			341.5		-121.0		16,300		16,400		0.653		300.0
154	15			331.0		-77.5		16,600		16,500		0.730		300.0
154	16			328.0		-152.0		16,300		16,400		0.587		280.0
155	150			319.0		-77.0		16,700		16,200		0.490		200.0
155	16			315.5		-173.0		16,400		16,300		0.807		396.7
156	15			307.0		-78.0		16,500		16,200		0.510		200.0
156	16			305.5		-179.5		16,600		16,400		0.611		300.0
157	15			360.0		-70.0		16,400		16,000		0.182		80.0
157	15			300.0		-107.5		16,100		16,500		0.377		150.0
159	16			298.5		-209.0		16,300		16,000		0.717		370.9
159	17			295.0		-197.5		16,200		16,100		0.182		90.0
160	16			302.0		-275.5		16,200		16,400		0.526		300.0
160	17			290.5		-279.5		16,300		16,200		0.262		150.0
161	16			312.5		-247.5		16,100		16,700		0.370		200.0
161	17			298.5		-264.0		16,500		16,300		0.572		325.5
162	16			324.5		-210.5		16,300		16,400		0.628		333.8
162	17			306.5		-221.0		16,300		16,100		0.617		329.3
163	16			333.0		-148.5		16,100		16,400		0.635		300.0
163	17			314.5		-183.0		16,300		16,300		0.751		373.6
164	16			336.5		- 95.5		16,000		16,400		0.166		70.0
164	17			319.5		-68.0		16,500		16,500		0.516		200.0
165	16			350.0		-51.0		16,100		16,100		0.175		70.0
165	17			324.0		-71.5		16,100		16,000		0.930		370.0
166	16			394.0		46.0		16,200		16,700		0.889		300.0
166	17			348.5		18.0		16,400		16,300		0.211		70.0
167	17			405.0		20.0		16,800		16,000		0.495		200.0
168	16			460.0		110.0		8,500		17,200		0.717		124.1
168				444.5				10,900		16,100		0.276		100.0
	18					-90.0		15,900				0.605		265.6
169	17			409.5		-15.5				15,400		0.729		42.9
169	18			423.5		-11.5		2,800		20,700		0.729		250.0
169	18	-		420.0		120.0		16,000		11,300		0.541		200.0
170	17			359.5		-8.0		16,000		15,900		0.560		79.1
170	18	7		357.0		-72.0		7,300		22,200		0.500		ィフ・エ

	Pat	th een	:		F.	low Path	D	imen s ior	18		:	Perme- ability	:	Conduc- tivity
Node				Top	:	Bottom	-	Width	-	Length	-:	$(af/ft^2-$:	(af-ft/
No.			:	(feet)		(feet)		(feet)		(feet)		yr)	:	$ft^2-yr)$
110.	÷	40.	<u>.</u>	(1000)	<u>.</u>	(2000)	÷	(1000)	·	(1000)	·	J- /	÷	<u> </u>
170		188		398.0		-62.0		13,000		18,400		0.154		50.0
171		172		322.5		-2.5		16,100		16,000		0.612		200.0
171		187		332.5		-14.0		16,400		16,200		0.428		150.0
172		173		307.0		-44.0		16,000		16,100		0.201		70.0
172		186		298.0		-102.5		16,000		16,500		0.258		100.0
173		174		301.0		-102.0		16,400		16,500		0.499		200.0
173		185		293.5		-85.0		16,400		15,900		0.384		150.0
174		175		296.5		-193.5		16 ,40 0		16,100		0.501		250.0
174		184		294.0		-153.5		16,200		16,200		0.538		240.8
175		176		292.5		-237.5		16,400		16,500		0.628		330.7
175		183		292.5		-282.5		16,400		16,300		0.173		100.0
176		177		287.0		-268.0		16,200		16,100		0.370		206.6
176		182		290.0		-295.0		16,300		16,100		0.169		100.0
177		178		287.0		-268.0		16,400		15,800		0.202		116.2
177		181		287.0		-203.5		16,000		16,200		0.314		152.1
178		179		302.5		-205.0		16,500		17,800		0.106		50.0
178		180		290.0		-255.0		16,400		16,200		0.336 0.437		185.5 215.4
180 180		181 201		290.0 342.5		-190.5 -212.5		16,000 16,000		15,600 16,300		0.437		232.1
181		182		290.0		-230.5		15,900		16,400		0.198		100.0
181		200		325.0		-145.5		16,100		16,100		0.325		152.9
182		183		290.0		-340.0		15,900		16,500		0.639		387.9
182		199		326.0		-284.0		16,300		16,100		0.605		373.8
183		184		290.0		-242.5		15,700		16,100		0.482		250.3
183		198		321.0		-249.0		16,300		15,900		0.583		340.6
184		185		286.5		-136.0		16,000		16,300		0.538		223.1
184		197		300.0		-122.5		16,200		15,800		0.162		70.0
185		186		284.5		-143.0		16,000		16,100		0.165		70.0
185		196		284.0		-116.0		16,400		15,800		0.241		100.0
186		187		308.0		-113.5		16,100		17,000		0.538		214.8
186		195		325.5		-112.0		15,900		17,500		0.504		200.5
187		188		371.0		-68.0		5,500		21,700		0.359		40.0
187		193		382.5		-61.5		6,000		19,700		0.148		20.0
187		194		360.0		-62. 5		15,800		15,200		0.673		295.4
187		195		347.5		- 76.5		1,400		24,000		0.538 0.789		13.3 200.0
188 188		189		440.0 491.0		100.0 -94.0		13,200 15,800		17,700 21,100		0.769		30.0
188		191 193		423.5		-51.5		17,900		14,100		0.166		100.0
189		191		487.5		-115.0		3,000		23,300		0.129		10.0
191		192		565.0		-294.0		14,600		16,500		0.001		1.0
191		211		612.5		-217.5		3,700		20,200		0.000		0.0
192		193		500.0		10.0		16,400		16,700		0.002		1.0
_				-				-						

TABLE 35 (continued)

	Pat	h									:	Perme-	:	Conduc-
Be	twe	en	:		P.	low Path	D:	imension	าธ		:	ability	:	tivity
Node	:	Node	- :-	Top	:	Bottom	:	Width	:	Length	_:	$(af/ft^2-$:	(af-ft/
No.	:	No.	:	(feet)	:	(feet)	:	(feet)	:	(feet)	:	yr)	:	ft ² -yr)
192		210		605.0		-704.0		9,800		17,000		0.212		160.0
192		211		607.5		-381.5		17,400		11,600		0.115		170.0
193		194		412.5		-46.0		13,600		14,500		0.233		100.0
193		209		457.5		-17.5		8,300		18,900		1.198		250.0
193		210		530.0		10.0		1,900		24,900		0.006		0.2
194		195		377•5		-61.0		12,300		16,800		0.628		201.5
194		209		435.0		-18.5		15,000		11,000		0.485		300.0
195		196		325.0		- 85.0		16,000		17,100		0.415		159.1
195		207		365.0		-155.0		3,500		22,200		0.381		31.2
195		208		432.5		-37.5		14,000		16,400		0.560		224.9
195		209		422.5		-32.5		3,100		19,300		0.516		37.7
196		197		297.5		-102.5		14,900		16,100		0.135		50.0
196		207		325.0		- 165 . 0		16,300		15,100		0.291		154.2
197		198		331.0		-129.0		16,000		16,400		0.223		100.0
197		206		385.0		-150.0		15,700		16,400		0.359		183.7
197		207		337.5		-172.5		1,500		21,400		0.291		10.4
198		199		357.0		-193.0		16,100		16,300		0.549		298.4
198		205		423.5		-136.5		16,300		16,400		0.729		405.5
199		200		361.0		-199.0		16,300		16,400		0.180		100.0
199		204		441.0		-181.5		16,300		16,100		0.762		480.4
200		201		377.5		-167.5		16,400		15,800		0.314		177.6
200		203		442.5		-62.5		16,300		16,100		0.587		300.0
201		202		490.0		-20.0		15,900		15,800		0.247 0.189		126.6 100.0
202		203		555.0		85.0 100.0		18,000		16,000				139.0
202 203		220 204		780.0 522.5		<u>-45.0</u>		15,800 17,800		19,900 16,300		0.257 0.242		150.0
_		219		750.0		30.0		16,000		20,400		0.650		367.0
203 204		205		507.5		-125.0		17,900		16,100		0.942		662.2
204		218		730.0		-80.0		16,200		20,600		0.659		420.0
205		206		477.5		-157.5		17,900		16,400		0.289		200.0
205		217		673.0		-100.0		16,700		19,900		0.651		422.0
206		207		412.5		-212.5		17,900		15,700		0.140		100.0
206		216		580.0		-160.0		16,600		17,800		0.527		364.0
207		208		432.5		-117.5		3,900		20,700		0.437		45.3
207		215		397.5		-187.5		20,800		10,300		0.336		397.3
208		209		490.0		5.0		15,500		16,000		0.583		274.0
208		214		780.0		270.0		17,100		17,900		0.103		50.0
208		21.5		465.0		-70.0		16,900		16,200		0.516		287.8
209		210		565.0		110.0		16,500		17,400		0.006		2.4
209		214		620.0		190.0		2,700		23,800		0.006		0.3
210		211		652.5		-627.5		8,400		19,700		0.128		70.0
510		212		691.0		-601.0		1,800		19,700		0.059		7.0
						JUL 10		_,		/5100				,

TABLE 35 (continued)

	Pat	th een	:		F	low Path	D:	imen s ion	าธ		:	Perme- ability	:	Conduc- tivity
Node No.	-	Node No.	:	Top (feet)	:	Bottom (feet)	:	Width (feet)	:	Length (feet)	: :	(af/ft ² - yr)	:	(af-ft/ft ² -yr)
210		213		720.0		-780.0		17,100		11,400		0.111		250.0
210		214 212		705.0 693.5		-696.0 -278.5		15,000		21,500		0.235		230.0 45.0
212		213 214 216		761.0 775.0 565.0		-431.0 -526.0		18,700 16,700		16,900 18,300		0.083 0.253 0.244		300.0
215 216 217		217 218		775.0 895.0		-140.0 -105.0 -65.0		12,900 19,700 21,300		22,200 17,300 16,900		0.439		100.0 440.0 480.0
218 219		219 220		957.5 975.0		-20.0 30.0		21,200 20,400		16,200		0.117 0.315		150.0 380.0
		220		717.0		30.0		20,400		10,000		U+J±/		

^{1/} Dummy nodes.

TABLE 36

CONFINED LAYER NODE-TO-NODE FLOW PATH DATA
DATA BASE FOR RUN 'A'
May 30, 1974

Par	th :				:	Perme-	Conduc-
Betwe	een :	J	Flow Path	Dimensions	:	ability :	tivity
Node:	Node :	Top:	Bottom	: Width :	Length:	(af/ft ² -:	
No.:	No.:		(feet)	: (feet) :		yr) :	: ft ² -yr)
				······································			
301	302,	-755.0	-1,215.0	15,900	15,900	0.224	103.1
301	5211/	-753.5	-1,163.5	16,000	16,200	0.336	136.1
302	303	-769.0	-1,269.0	15,800	15,900	0.224	111.4
302	329 ,	-654.0	-1,184.0	16,200	15,800	0.213	115.7
302	5221	-901.5	-1,351.5	16,100	16,400	0.224	99.0
303	304	-568.5	-1,078.5	15,900	16,400	0.247	121.9
303	328_ ,	-640.0	-1,130.0	16,100	16,300	0.168	81.4
303	5231/	-802.5	-1,252.5	16,300	16,300	0.141	63.5
304	305	-392.0	-952.0	16,400	16,500	0.191	106.1
304	327.	-376.5	-896.5	16,300	15,800	0.112	60.0
304	524 <u>1</u> /	-541.0	-1,011.0	16,300	16,400	0.224	104.6
305	306	-257.5	-857.5	16,100	16,000	0.112	67.7
305	326 ,	-303.5	-853.5	16,500	16,200	0.392	219.8
305	5251	-396.0	-896.0	16,700	16,300	0.134	68.6
306	307	-159.0	-829.0	16,100	16,200	0.120	80.0
306	325_ /	-170.5	-810.5	16,400	16,000	0.448	294.1
306	5261	-286.5	- 786.5	16,200	16,300	0.112	55.7
307	308	-109.5	-929.5	16,600	15,700	0.269	233.3
307	324 ,	-117.5	-907.5	15,900	16,000	0.359	281.6
307	5271	-187.5	-857.5	15,900	16,600	0.390	250.0
308	309	-101.0	-1,131.0	16,000	16,200	0.202	205.3
308	323, /	-93.5	-1,063.5	16,000	15,900	0.179	175.1
308	5281/	-142.0	-967.0	15,900	16,400	0.313	250.0
309	310	-132.5	-1,422.5	16,100	16,000	0.154	200.0
309	322 ,	-108.0	-1,248.0	16,400	16,000	0.086	100.0
309	5291/	-209.0	-1,239.0	16,300	15,600	0.186	200.0
310	311	-116.0	-1,606.0	16,100	16,400	0.137	200.0
310	321,	-119.5	-1,499.5	16,400	16,200	0.143	200.0
310	5301/	-198.5	-1,518.5	16,300	16,100	0.224	300.0
311	312	- 52.5	-1,522.5	16,000	16,600	0.141	200.0
311	320, /	-74.0	-1,584.0	15,900	16,000	0.359	538.3
311	5311/	-117.5	-1,567.5	15,800	16,000	0.210	300.0
312	313	29.0	-1,221.0	15,800	15,600	0.224	283.8
312	319, /	-21.5	-1,451.5	16,300	16,300	0.247	352.7
312	532 <u>1</u> /	-80.Ó	-1,360.0	16,200	15,500	0.168	224.8
313	318,	72.5	-1,087.5	16,100	16,100	0.086	100.0
313	5331/	44.0	-1,026.0	16,100	16,100	0.280	300.0
318	319	22.0	-1,318.0	16,100	16,100	0.149	200.0
318	340	81.0	-1,069.0	16,000	15,800	0.112	130.5
319	320	-43.0	-1,513.0	16,100	16,200	0.258	376.7
319	339	-6.0	-1,506.0	16,400	16,000	0.130	200.0
320	321	-77.5	-1,477.5	16,000	16,100	0.144	200.0
320	338	-52.5	-1,502.5	16,000	15,900	0.445	650.0

Pa			Flow Path	Dimonator		:	Perme-	:	Conduc-
Betw						_:	ability	:	tivity
Node:	Node:	Top:	Bottom	: Width	: Length	:	(af/ft ² -	:	(af-ft/
No.:	No.:	(feet):	(feet)	: (feet)	: (feet)	:	yr)	:	ft ² -yr)
				_					
321	322	- 95.0	-1,325.0	16,500	16,400		0.404		499.4
321	337	-81.0	-1,321.0	16,300	16,000		0.158		200.0
322	323	-100.5	-1,180.5	16,100	16,000		0.269		292.4
322	336	-94.0	-1,154.0	16,400	16,100		0.093		100.0
323	324	-101.5	-1,041.5	16,100	15,800		0.280		268.4
323	335	-111.5	-1,001.5	16,100	16,200		0.113		100.0
324	325	-129.0	-889.0	16,100	16,200		0.605		457.2
324	334	-115.0	-835.0	16,000	16,200		0.527		374.7
325	326	- 216.5	-806.5	16,100	16,300		0.429		250.0
325	333	-145.5	-735.5	16,300	16,500		0.650		378.9
326	327	-288.0	-798.0	16,000	16,300		0.140		70.0
326	332	-191.5	-721.5	16,400	16,400		0.189		100.0
327	328	-448.0	-948.0	16,100	16,300		0.280		138.4
327	331	-335.0	-865.0	16,300	16,400		0.504		265.7
328	329	-525.0	-1,045.0	16,100	15,900		0.269		141.7
328	330	-491.5	-961.5	16,200	16,100		0.235		111.3
329	330	-421.5	-931.5	5,100	22,800		0.269		30.7
330	331	-378.5	-878.5		16,100		0.392		197.4
330	354	-380.0	-810.0		22,600		0.280		45.3
331	332	-238 . 5	-788. 5	16,400	16,400		0.182		100.0
331	354	-370.5	-840.5		15,500		0.448		218.9
332	333	-120.5	-650.5	16,300	16,200		0.188		100.0
332	353	-149.0	-629.0	16,400	15,800		0.437		217.8
333	334	-131.5	-681.5	16,400	16,400		0.572		314.4
333	352	-116.5	-576.5	16,300	16,000		0.504		236.4
334	335	-125.0	- 795.0	16,400	16,000		0.218		150.0
334	351	-135.0	-675.0	16,100	16,500		0.572		301.2
335	336	-105.0	-975.0	16,100	16,000		0.482		422.0
335 335	350	-136.0	-806.0	15,900	16,400		0.493		320.4
336	337	-80.0	-1,150.0	16,300	16,300		0.654		700.0
336	349	-101.0	-1,081.0	16,300	16,400		0.616		600.0
337	338	-56.0	-1,346.0	16,100	16,200		0.624		800.0
337	348	-61.0	-1,181.0	16,400	16,000		0.653		750.0
			1,101.0		16,000		0.136		200.0
338	339	-15.5	-1,495.5	15,900			0.650		858.2
338	347	- 9.5	-1,329.5	16,200	16,200		0.179		226.4
339	340	53.0	-1,257.0	15,900	16,500				
339	346	22.5	-1,417.5	16,400	16,100		0.404		591.9
346	347	28.5	-1,251.5	16,400	15,900		0.227		300.0
346	363	61.0	-1,289.0	16,300	16,100		0.219		300.0
347	348	-14.5	-1,164.5	16,300	16,100		0.549		639.5
347	362	31.5	-1,138.5	16,100	16,100		0.426		498.4
348	349	-82.0	-1,112.0	16,400	16,400		0.194		200.0
348	361	-30.5	-1,120.5	16,300	16,200		0.504		553.2

P	ath	:								:	Perme-	:	Conduc-
	ween	:		1	flow Path	D:	Imensi on	36		:	ability	:	tivity
	: Node		Top	:	Bottom	:	Width	:	Length		$(af/ft^2-$:	(af-ft/
	: No.		(feet)		(feet)	:	(feet)	:	(feet)	:	yr)	:	ft ² -yr)
						<u> </u>						<u> </u>	
349	350		-132.0		-912.0		16,100		16,000		0.637		500.0
349	360		- 85.0		-995.0		16,300		16,200		0.605		554.2
350	351		-146.0		-686.0		16,000		15,800		0.183		100.0
350	359		-116.5		-716.5		15,800		16,000		0.624		370.0
351	352		-120.0		-570.0		16,000		15,800		0.219		100.0
351	358		-110.5		-600.5		16,100		15,900		0.202		100.0
352	353		-145.0		-555.0		15,800		16,200		0.175		70.0
352	357		-165.0		-575.0		16,200		16,300		0.617		251.2
353	354		-281.0		-681. 0		15,900		16,400		0.181		70.0
353	356		-227.5		-627.5		16,400		16,500		0.176		70.0
354	355		-283.5		-683.5		15,900		16,500		0.381		146.9
355	356		-230.0		-630.0		16,600		16,300		0.482		196.4
355	378		-160.0		-530.0		16,000		16,300		0.325		118.1
356	357		-247.5		-647.5		16,600		16,200		0.146		60.0
356	377		-245.0		-665.0		16,500		16,200		0.234		100.0
357	358		-155.5		-605.5		16,100		16,300		0.225		100.0
357	376		-240.0		-660.0		16,300		16,000		0.234		100.0
358	359		-81.0		-631.0		16,500		15,900		0.263		150.0
358	375		-146.5		-576.5		16,100		16,200		0.234		100.0
359	360		-69.5		-799.5		16,300		16,300		0.342		250.0
359	374		-59.5		-559.5		15,800		15,900		0.706		350.9
360	361		-33.5		-1,003.5		16,100		16,100		0.206		200.0
360	373		-59.0		-839.0		16,400		16,200		0.405		320.0
361	362		15.5		-1,094.5		16,000		16,400		0.381		412.7
361	372		-55.0		-1,065.0		16,300		16,200		0.560		569.6
362	363		64.0		-1,176.0		16,200		16,000		0.471		591.1
362	371		-7.5		-1,097.5		16,300		16,200		0.410		450.0
363	370		56.5		-1,223.5		16,500		16,300		0.437		566.5
370	371		-15.0		-1,145.0		16,100		16,300		0.538		600.0
370	386		-28.0		-1,138.0		16,400		16,100		0.291		329.5
371	372		-78.0		-1,068.0		15,900		16,500		0.210		200.0
371	385		- 85.0		-975.0		16,300		16,200		0.673		602.3
372	373		-80.5		-900.5						0.244		200.0
372	384		-119.5		- 789.5		15,900 16,300		15,900 16,100		0.295		200.0
	374		-49.0		-599.0						0.189		100.0
373			-102.5		-632.5		15,700		16,300 15,900		0.594		324.8
373	383		-		-505.0		16,400				0.265		100.0
374	375		-125.0 -126.0		-586. 0		15,800		15,900		0.605		
374	382						15,800		16,000		0.181		275.0
375	376		-231.0		-631.0		15,900		16,400				70.0
375	381		-185.0		- 535.0		16,200		15,600		0.413		150.0
376 376	377		-237.5		-677.5		15,900		16,100		0.092		40.0
376	380		-221.5		-661.5		16,300		15,800		0.176		80.0
377	378		-175.0		-565.0		15,800		16,200		0.318		145.0
377	379		-227.5		-647.5		16,400		16,000		0.465		200.0

	Pa.		:	······································		Flow Path	n:	mensio			:	Perme-	:	Conduc-
		een	_: _						113		_:	ability	:	tivity
	:	Node	:	Top	:	Bottom	:		:	Length	:	$(af/ft^2-$:	(af-ft/
No.	:	No.	:	(feet)	:	(feet)	:	(feet)	:	(feet)	:	yr)	:	ft ² -yr)
37 9		380		-211.5		-631.5		15,800		16,100		0.347		143.2
379		402		-210.0		-590.0		16,000		16,000		0.347		115.0
380		381		-175.5		-565.5		16,000		16,100		0.181		70.0
380		401		-208.0										
		382		-186.0		-638.0		16,300		16,400		0.448		191.6
381						-616.0		15,900		16,000		0.234		100.0
381		400		-165.5		-565.5		16,000		16,400		0.128		50.0
382		383		-179.5		-619.5		16,000		16,000		0.523		230.0
382		399		-197.0		-607.0		16,000		15,900		0.639		263.6
383		384		-141.5		-521.5		16,000		16,100		0.796		300.6
383		398		-176.5		-616.5		16,100		15,900		0.785		349.6
384		385		-126.5		-696.5		16,300		16,600		0.268		150.0
384		397		-138.0		-548.0		16,400		16,100		0.897		374.5
385		386		-98.0		-968.0		16,100		16,200		0.504		436.1
385		396		-98.5		-818.5		16,000		16,100		0.617		441.1
386		387		-40.5		-1,259.5		16,200		16,300		0.397		480.7
386		395		-96.5		-1,076.5		16,400		16,300		0.381		375.8
387		394		-50.0		-1,517.0		16,100		16,400		0.487		701.8
393		394		-48.5		-2,059.0		16,600		16,200		0.170		350.0
393		411		-17.5		-2,530.0		16,300		16,400		0.020		50.0
394		395		-106.0		-1,334.0		16,300		16,000		0.240		300.0
394		410		-115.0		-1,729.5		15,900		15,800		0.031		50.0
395		396		-97.0		-927.0		16,100		16,200		0.303		250.0
395		409		-122.0		-1,022.0		16,400		15,800		0.107		100.0
396		397		-110.0		-670.0		15,800		16,100		0.182		100.0
396		408		-116.0		-736.0		15,700		15,900		0.163		100.0
397		398		-173.0		-643.0		15,700		16,200		0.886		403.4
397		407		-150.5		-580.5		16,400		15,800		0.224		100.0
398		399		-194.0		-604.0		15,800		16,100		0.796		320.2
398		406		-159.5		-639.5		16,000		15,900		0.725		350.0
399		400		-176.5		-556.5		16,100		16,200		0.132		50.0
399		405		-179.5		-579.5		16,300		16,100		0.247		100.0
400		401		-198.0		-638.0		16,300		15,700		0.628		286.8
400		404		-185.0		-705.0		15,800		16,000		0.682		350.0
401		402		-206.5		-596.5		16,400		16,300		0.404		158.3
401		403		-231.5		-711.5		16,200		15,800		0.740		364.1
403		404		-218.5		-778. 5		15,900		16,300		0.549		300.0
404		405		-188.0		-728.0		16,100		16,100		0.370		200.0
404		431		-178.5		-828.5		15,900		15,900		0.615		400.0
405		406		-145.0		-615.0		16,400		16,200		0.420		200.0
405		430		-187.0		-717.0		16,200		16,300		0.420		50.0
406		407				-717.0 -577.0		16,600		16,500		0.095		100.0
406				-137.0 -142.0		-612.0		16,600				0.104		50.0
_		429								16,300				
407		408		-156.5		-646.5		16,500		16,300		0.302		150.0

]	Pa.	th	:								:	Perme-	:	Conduc-
Be	tw	een	:		F	rlow Path	D:	imension	18		:	ability	:	tivity
Node	:	Node	:	Top	:	Bottom	:	Width	:	Length	•	$(af/ft^2-$:	(af-ft/
No.	:	No.	:	(feet)	:	(feet)	:	(feet)	:	(feet)	:	yr)	:	ft ² -yr)
407		428		-131.0		-621.0		16,400		16,600		0.083		40.0
408		409		-141.0		-831.0		16,300		16,300		0:145		100.0
408		427		-133.5		-833.5		16,100		16,400		0.146		100.0
409		410		-131.0		-1,417.5		16,300		16,400		0.039		50.0
409		426		-133.0		-933.0		16,600		16,400		0.123		100.0
41Ó		411		-84.0		-2,200.5		16,200		16,100		0.047		100.0
410		425		-130.0		-1,756.5		16,100		16,200		0.049		80.0
411		412		31.0		-2,719.0		16,300		16,500		0.037		100.0
411		424		-74.0		-2,289.0		16,500		15,800		0.030		70.0
412		423		65.0		-2,960.0		16,200		15,800		0.032		100.0
422		423		80.0		-3,010.0		16,300		16,300		0.291		900.0
422		440		39.0		-3,311.0		16,500		16,500		0.239		800.0
423		424		-40.0		-2,530.0		16,200		16,300		0.121		300.0
423		439		-40.0		-3,275.0		16,200		16,100		0.184		600.0
424		425		-120.0		-1,845.0		16,200		16,400		0.041		70.0
424		438		-82.0		-1,987.0		16,500		16,200		0.258		500.0
425		426		-132.0		-1,272.0		16,200		16,600		0.045		50.0
425		437		-111.5		-1,451.5		16,200		16,200		0.149		200.0
426		427		-125.5		-935.5		16,300		16,200		0.245		200.0
426		436		-132.0		-932.0		16,600		16,300		0.061		50.0
427		428		-108.0		-808.0		16,300	٠	16,200		0.142		100.0
427		435		-157.5		-857.5		16,300		16,200		0.028		20.0
428		429		-136.0		-656.0		16,300		16,300		0.192		100.0
428		434		-139.5		-579.5		16,200		16,400		0.092		40.0
429		430		-184.0		-714.0		16,200		16,300		0.114		60.0
429		433		-191.5		-591.5		16,300		16,100		0.148		60.0
43Ó		431		-177.5		-817.5		16,400		16,200		0.807		522.9
430		432		-182.5		-577.5		16,100		16,000		0.252		100.0
432		433		-190.0		-455.0		16,400		16,100		0.211		57.0
433		434		-195.0		-515.0		16,200		16,200		0.250		80.0
433		458		-165.0		-480.0		7,200		22,500		0.289		100.0
434		435		-189.0		-629.0		16,100		16,200		0.229		100.0
434		458		-150.0		-485.0		16,300		15,800		0.223		70.0
435		436		-164.0		-854.0		16,100		16,400		0.221		150.0
435		457		-174.0		-814.0		16,200		16,400		0.237		150.0
436		437		-111.5		-1,111.5		16,200		16,500		0.204		200.0
436		456		-128.0		-1,128.0		16,600		16,300		0.196		200.0
437		438		-73.5		-1, 593.5		16,300		16,500		0.200		300.0
437		455		-134.5		-1,464.5		16,200		16,700		0.233		300.0
438		439		-82.0		-2,732.0		16,400		16,300		0.263		700.0
438		454		-113.0		-2,273.0		16,500		16,300		0.274		600.0
439		440		-81.0		-3,576.0		16,300		16,400		0.259		900.0
439		453		-104.0		-3,314.0		16,200		16,600		0.223		700.0

	Path	:								<u>.</u>	Perme-	:	Conduc-
	tween	•]	Flow Path	D:	imension	าธ		:	ability	•	tivity
	: Node	-:	Top	:	Bottom	.	Width	:	Length	-:	(af/ft ² -	:	(af-ft/
No.	: No.	-	(feet)			:		•		:	yr)	•	ft ² -yr)
		<u> </u>	(2000)	÷	1=300/	·	(1000)	÷	(1000)	•	3-7	÷	
440	441		-17.0		-2,672.0		16,300		16,400		0.152		400.0
440	452		-80.0		-3,535.0		16,500		16,200		0.227		800.0
441	451		-51.5		-1,981.5		16,200		16,300		0.209		400.0
450	451		-78.0		-1,888.0		16,600		16,000		0.213		400.0
450	466		-39.0		-1,739.0		16,400		16,000		0.287		500.0
451	452		-114.5		-2,844.5		16,600		16,300		0.252		700.0
451	465		-89.5		-2,429.5		16,100		16,200		0.258		600.0
452	453		-103.0		-3,273.0		16,600		16,300		0.310		1,000.0
452	464		-115.0		-3,205.0		16,600		16,400		0.320		1,000.0
453	454		-135.0		-2,855.0		16,500		16,500		0.257		700.0
453	463		-153.5		-2,733.5		16,300		16,400		0.390		1,000.0
454	455		-174.0		-2,144.0		16,600		16,500		0.252		500.0
454	462		-222.0		-2,342.0		16,300		16,400		0.285		600.0
455	456		-151.0		-1,481.0		16,700		16,200		0.219		300.0
455	461		-239.5		-1,679.5		16,400		16,300		0.276		400.0
456	457		-138.0		-1,088.0		16,500		16,200		0.207		200.0
456	460		-237.0		-1,117.0		16,600		16,400		0.225		200.0
457	458		-135.0		-670.0		16,400		16,000		0.109		60.0
457	459		-175.0		-745.0		16,100		16,500		0.180		100.0
459	460		-274.0		-774.0		16,300		16,000		0.196		100.0
459	478		-270.0		-800.0		16,200		16,100		0.280		149.5
460	461		-325.5		-1,315.5		16,200		16,400		0.205		200.0
460	477		-329.5		-1,029.5		16,300		16,200		0.213		150.0
461	462		-287.5		-1,877.5		16,100		16,700		0.261		400.0
461	476		-301.5		-1,741.5		16,500		16,300		0.137		200.0
462	463		-240.5		-2,220.5		16,300		16,400		0.254		500.0
462	475		-266.0		-1,816.0		16,300		16,100		0.255		400.0
463	464		-165.5		-2,665.5		16,100		16,400		0.367		900.0
463	474		-206.0		-1,936.0		16,300		16,300		0.231		400.0
464	465		-90.0		-2,790.0		16,000		16,400		0.228		600.0
464	473		-146.5		-2,326.5		16,500		16,500		0.275		600.0
465	466		-50.5		-2,280.5		16,100		16,100		0.224		500.0
465	472		-76.5		-2,256.5		16,100		16,000		0.274		600.0
466	467		16.5		-1,703.5		16,200		16,700		0.120		200.0
466	471		-24.0		-1,704.0		16,400		16,300		0.296		500.0
467	470		-7.5		-1,387.5		16,800		16,000		0.207		300.0
469	470		-53.0		-1,263.0		15,900		15,400		0.296		370.0
469	488		-46.5		-1,296.5		2,800		20,700		0.336		56.9
469	489		-71.0		-1,205.0		16,000		11,300		0.249		400.0
470	471		-48.0		-1,388.0		16,000		15,900		0.111		150.0
470	487		-109.5		-1,269.5		7,300		22,200		0.262		100.0
470	488		-84.5		-1,344.5		13,000		18,400		0.225		200.0

	Pa	ath :								:	Perme-	:	Conduc-
В	eti	ween :		I	Flow Path	D	imension	ns		:	ability	:	tivity
Node	:	Node :	Top	:	Bottom	:	Width	:	Length	-:	$(af/ft^2-$:	(af-ft/
No.	:	No.:	(feet)	:	(feet)	:	(feet)	:	(feet)	:		:	ft ² -yr)
			······································								<u> </u>		
471		472	-50.0		-1,680.0		16,100		16,000		0.274		450.0
471		487	-66.5		-1,346.5		16,400		16,200		0.077		100.0
472		473	-133.0		-1,793.0		16,000		16,100		0.242		400.0
472		486	-149.5		-1,549.5		16,000		16,500		0.059		8 0.0
473		474	-187.0		-1,597.0		16,400		16,500		0.214		300.0
473		485	-189.0		-1,499.0		16,400		15,900		0.148		200.0
474		475	-231.5		-1,531.5		16,400		16,100		0.227		300.0
474		484	- 206 . 5		-1,456.5		16,200		16,200		0.160		200.0
475	,	476	-280.0		-1,680.0		16,400		16,500		0.144		200.0
475		483	-320.0		-1,530.0		16,400		16,300		0.246		300.0
476		477	-305.5		-1,455.5		16,200		16,100		0.130		150.0
476		482	- 337•5		-1,557.5		16,300		16,100		0.162		200.0
477		478	- 325.5		-1,055.5		16,400		15,800		0.235		178.4
477		481	- 285 . 5		-1,155.5		16,000		16,200		0.233		200.0
478		479	-292.5		- 892.5		16,500		17,800		0.090		49.9
478		480	-325.0		-1,015.0		16,400		16,200		0.429		300.0
480		481	-285.0		-1,115.0		16,000		15,600		0.235		200.0
480		501	- 262 . 5		- 972.5		16,000		16,300		0.287		200.0
481		482	-317.5		-1, 257.5		15,900		16,400		0.384		350.0
481		500	-270.0		-1,110.0		16,100		16,100		0.179		150.0
482		483	-377.5		-1,407.5		15,900		16,500		0.101		100.0
482		499	- 330 . 5		-1,220.5		16,300		16,100		0.166		150.0
483		484	-295.0		-1,455.0		15,700		16,100		0.177		200.0
483		498	-304.0		-1,474.0		16,300		15,900		0.067		80.0
484		485	-208.5		-1, 358.5		16,000		16,300		0.115		130.0
484		497	-224.0		-1,304.0		16,200		15,800		0.036		40.0
485		486	- 205.5		-1,255.5		16,000		16,100		0.347		362.6
485		496	-206.0		-1,386.0		16,400		15,800		0.033		40.0
486		487	-166.0		-1,216.0		16,100		17,000		0.201		200.0
486		495	-194.5		-1,664.5		15,900		17,500		0.030		40.0
487		488	-103.0		-1,303.0		5,500		21,700		0.164		50.0
487		493	-105.0		-1,495.0		6,000		19,700		0.118		50.0
487		494	-133.0		-1,373.0		15,800		15,200		0.078		100.0
487		495	- 156.5		-1,676.5		1,400		24,000		0.056		5.0
488		489	-102.5		-1,286.5		13,200		17,700		0.227		200.0
488		49 3	-80.0		-1,570.0		17,900		14,100		0.159		300.0
493		494	-110.0		-1,640.0		13,600		14,500		0.209		300.0
493		509	- 56.0		-2,196.0		8,300		18,900		0.213		200.0
494		495	-161.5		-1,821.5		12,300		16,800		0.165		200.0
494		509	-84.0		-2,074.0		15,000		11,000		0.029		80.0
495		496	-195.0		-1,795.0		16,000		17,100		0.134		200.0
495		507	-245.0		-1,755.0		3 , 500		22,200		0.042		10.0

TABLE 36 (continued)

_	ath ween	· · · · ·	;			Flow Path	D	imension	າຣ		:	Perme- ability	:	Conduc- tivity
Node			-:-	Top	:	Bottom	÷	Width	:	Length	:	(af/ft ² -	•	(af-ft/
No.		<u> </u>		(feet)					•	. – .		yr)	:	ft ² -yr)
		-	·	(1000)	÷	(1000)	÷	(1000)	•	1200)		J-/	÷	<u> </u>
495	50	8		-107.5		-2,067.5		14,000		16,400		0.042		70.0
495	50	9		-107.5		-2, 377.5		3,100		19,300		0.027		10.0
496	49	7		-221.5		-1,331.5		14,900		16,100		0.146		150.0
496	50	7		- 255.0		-1,425.0		16,300		15,100		0.055		70.0
497	49	8		-233.0		-1,323.0		16,000		16,400		0.047		50.0
497	50	6		-224.0		-1,274.0		15,700		16,400		0.070		70.0
497	50	7		-271.5		-1,291.5		1,500		21,400		0.042		3.0
498	49	9		-257.0		-1,287.0		16,100		16,300		0.147		150.0
498	50)5		-191.5		-1,531.5		16,300		16,400		0.053		70.0
499	50	00		-283.0		-1,073.0		16,300		16,400		0.213		167.2
499	50)4		-220.5		-1,360.5		16,300		16,100		0.061		70.0
500	50	1		-247.5		- 967.5		16,400		15,800		0.201		150.0
500	50)3		-172.5		-1,002.5		16,300		16,100		0.238		200.0
501	50	2		-95.0		-665.0		15,900		15,800		0.349		200.0
502	50	3		-20.0		-700.0		18,000		16,000		0.327		250.0
502	52	20		2.5		- 707 . 5		15,800		19,900		0.259		146.0
503	50)4		-110.0		-1,290.0		17,800		16,300		0.078		100.0
503	51	.9		- 62 . 5		-1,102.5		16,000		20,400		0.319		260.0
504	50)5		-155.0		-1,605.0		17,900		16,100		0.062		100.0
504	51	.8		-132.5		-1,527.5		16,200		20,600		0.383		420.0
505	50	6		-182.5		-1,482.5		17,900		16,400		0.317		450.0
505	51	.7		-142.5		-1,987.5		16,700		19,900		0.323		500.0
506	50	7		-257.5		-1,367.5		17,900		15,700		0.356		450.0
506	51	.6		-190.0		-2,175.0		16,600		17,800		0.270		500.0
507	50	8		-167.5		-1,697.5		3,900		20,700		0.173		50.0
507	51	-5		-242.5		-1,582.5		20,800		10,300		0.222		600.0
508	50	9		-30.0		-2,320. 0		15,500		16,000		0.036		80.0
508	51	.5		-105.0		-1,895.0		16,900		16,200		0.268		500.0
515	51	.6		-175.0		-2,390.0		12,900		22,200		0.389		500.0
516	51	.7		-150.0		-2,680.0		19,700		17,300		0.208		600.0
517	51	.8		-120.0		-1,910.0		21,300		16,900		0.067		150.0
518	51	.9		-85.0		-1,340.0		21,200		16,200		0.061		100.0
519	52	20		-40.0		-1,110.0		20,400		16,000		0.220		300.0
•	•					•		-		-				

^{1/} Dummy nodes.

TABLE 37

INTERLAYER NODE-TO-NODE FLOW PATH DATA
DATA BASE FOR RUN 'A'
May 30, 1974

Pat	+h		:Conduc-		Pa	+h		:Conduc-
Betwe		Clay	:tivity	12.		een	Clay	:tivity
Node:	Node	Thicknes	s:(af-ft/	Nod		Node	Thicknes	s:(af-ft/
No.:	No.	(feet)	:ft ² -yr)	No.		No.	(feet)	:ft2-yr)
110. :	140.		.10917		•	110.		.10y1)
1	301	55	10.0	53		353	105	1.0
2	302	100	5.0	54		354	120	1.0
3	303	125	6.0	55		355	60	1.0
3 4	304	90	6.0	56		356	35	10.0
5	305	100	8.0	57		357	15	30.0
5 6	306	100	10.0	58		358	29	10.0
7	307	50	30.0	59		359	36	10.0
7 8	308	60	10.0	6 ó		360	60	70.0
9	309	145	5.0	61		361	44	90.0
1Ó	310	90	1.0	62		362	20	80.0
11	311	34	1.0	63		363	24	100.0
12	312	110	1.0	70		370	35	60.0
13	313	20	1.0	71		371	70	5.0
18	318	35	1.0	72		372	40	150.0
19	319	50	30.0	73		373	11	7.0
20	320	65	10.0	74		374	20	1.0
21	321	65	10.0	75		375	61	1.0
22	322	65	5.0	76		376	50	1.0
23	323	50	75.0	77		377	40	2.0
24	324	7 9	40.0	78		378	25	1.0
25	325	50	10.0	79 79		3 79	40	12.0
26	326	60	9.0	80		380	44	2.0
27	327	100	3.0	81		381	30	7.0
28	328	180	1.0	82		382	28	1.0
2 9	329	220	5.0	83		383	50	40.0
30	330	150	1.0	84		384	31	250.0
31	331	125	1.0	85		385	47	240.0
32	332	120	1.0	86		386	44	270.0
33	333	96	15.0	87		387	40	75.0
34	334	95	30.0	93		393	75	10.0
35	335	95	5.0	94		394	6ó	243.0
36	336	89	25.0	95 95		395	56	143.0
37	337	87	50.0	<u>9</u> 6		396	81	30.0
38	338	52	10.0	97		397	33	149.0
39	339	32	20.0	98		398	28	1.0
46	34ó	30	30.0	99		399	24	1.0
46	346	38	50.0	100		400	24	1.0
47	347	20	70.0	101		401	30	54.0
48	348	25	20.0	102		402	70	1.0
49	349	70	60.0	103		403	45	10.0
50	350	35	100.0	104		404	50	5.0
51	351	43	10.0	105		405	18	1.0
52	352	160	3.0	106		406	35	200.0
, -			2			.00	37	

	13.		- C		Dada		
	th	Clay	:Conduc-		Path	Clay	:Conduc-
Betw	reen	· Cray - Thicknes	:tivity		tween		:tivity
Node:		Thicknes (feet)	'ar-rt/		: Node	Thickne	ss: (af-ft/
No.:	No.	: (reet)	:ft ² -yr)	No.	: No.	: (feet)	:ft ² -yr)
107	407	40	130.0	1 69	469	50	1.0
108	408	38	200.0	170	470	25	10.0
109	409	24	100.0	171	471	55	1.0
110	410	26	5.0	172	472	40	1.0
111	411	100	100.0	173	473	138	5.0
112	412	50	40.0	174	474	31	30.0
122	422	50	1.0	175	475	45	30.0
123	423	100	200.0	176	476	40	2.0
124	424	110	50.0	177	477	35	10.0
125	425	10	50.0	178	478	80	1.0
126	426	97	100.0	179	479	95	1.0
127	427	41	110.0	180	480	60	1.0
128	428	30	110.0	181	481	129	1.0
129	429	75	4.0	182	482	45	1.0
13Ó	430	40	5.0	183	483	30	80.0
131	431	30	60.0	184	484	75	90.0
132	432	30	2.0	185	485	70	20.0
133	433	20	54.0	186	486	55	1.0
134	434	90	200.0	187	487	50	10.0
135	435	20	220.0	188	488	20	30.0
136	436	30	170.0	189	489	27	20.0
137	437	24	5.0	193	493	37	1.0
138	438	25	30.0	194	494	9 <u>1</u>	60.0
139	439	50	50.0	195	495	110	10.0
140	440	30	150.0	196	496	110	30.0
141	441	125	120.0	197	497	128	8.0
150	450	23	40.0	198	498	. 80	14.0
151	451	40	40.0	199	499	48	4.0
152	452	30	150.0	200	500	120	1.0
153	453	50	100.0	201	501	40	1.0
154	454	95	50.0	202	502	110	1.0
155	455	<u>9</u> 8	10.0	203	503	100	2.0
156	456	50	70.0	204	504	30	10.0
157	457	70	30.0	205	505	30	10.0
158	458	60	15.0	206	506	20	10.0
159	459	65	51.0	207	507	70	1.0
160	460	65	1.0	208	508	30	2.0
161	461	35	1.0	20 9	509	40	3.0
162	462	45	80.0	21 5	5 1 5	40	1.0
163	463	15	70.0	216	5 1 6	40	1.0
164	464	19	150.0	217	517	5 0	1.0
165	465	30	115.0	217	518	60	1.0
166	466	29	1.0	210	5 1 9	50 50	1.0
167	467	30	1.0	220	5 20	30	3.0
TO 1	701	20	T.0	220	JEU	50	J•0

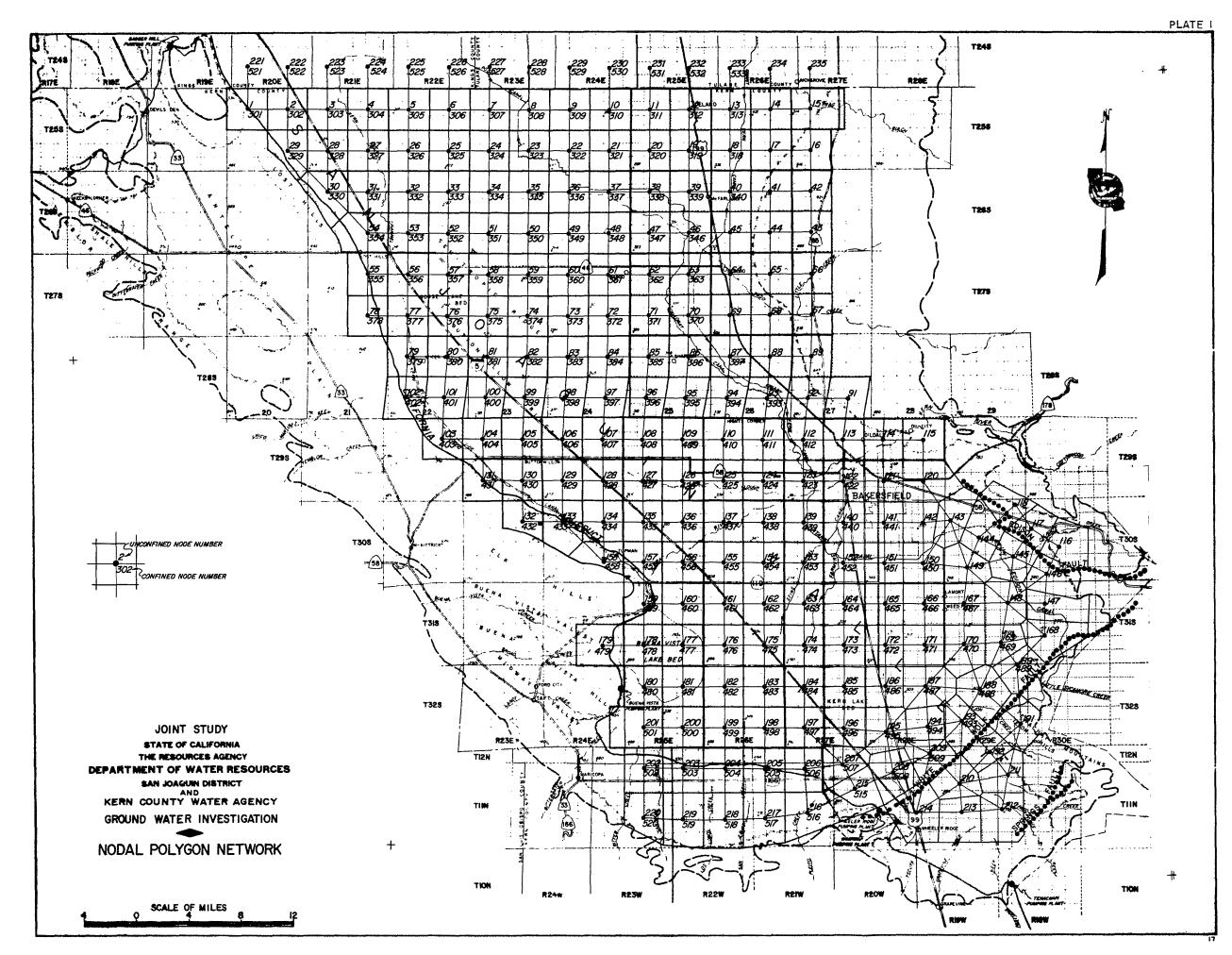
TABLE 38

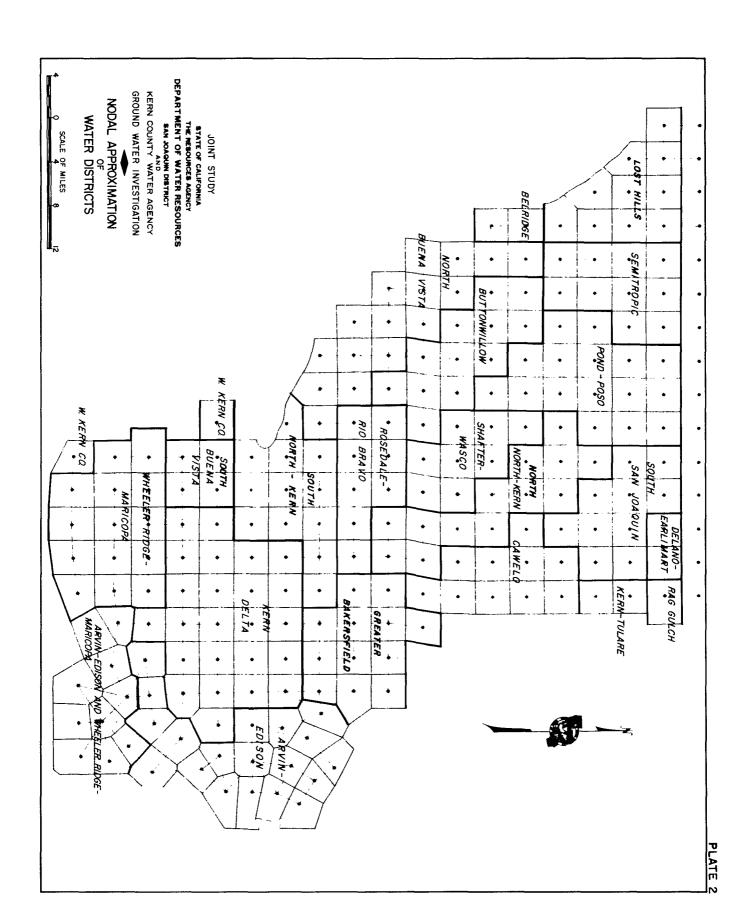
FOREBAY NODES TO CONFINED AQUIFER NODES FLOW PATH DATA DATA BASE FOR RUN 'A' May 30, 1974

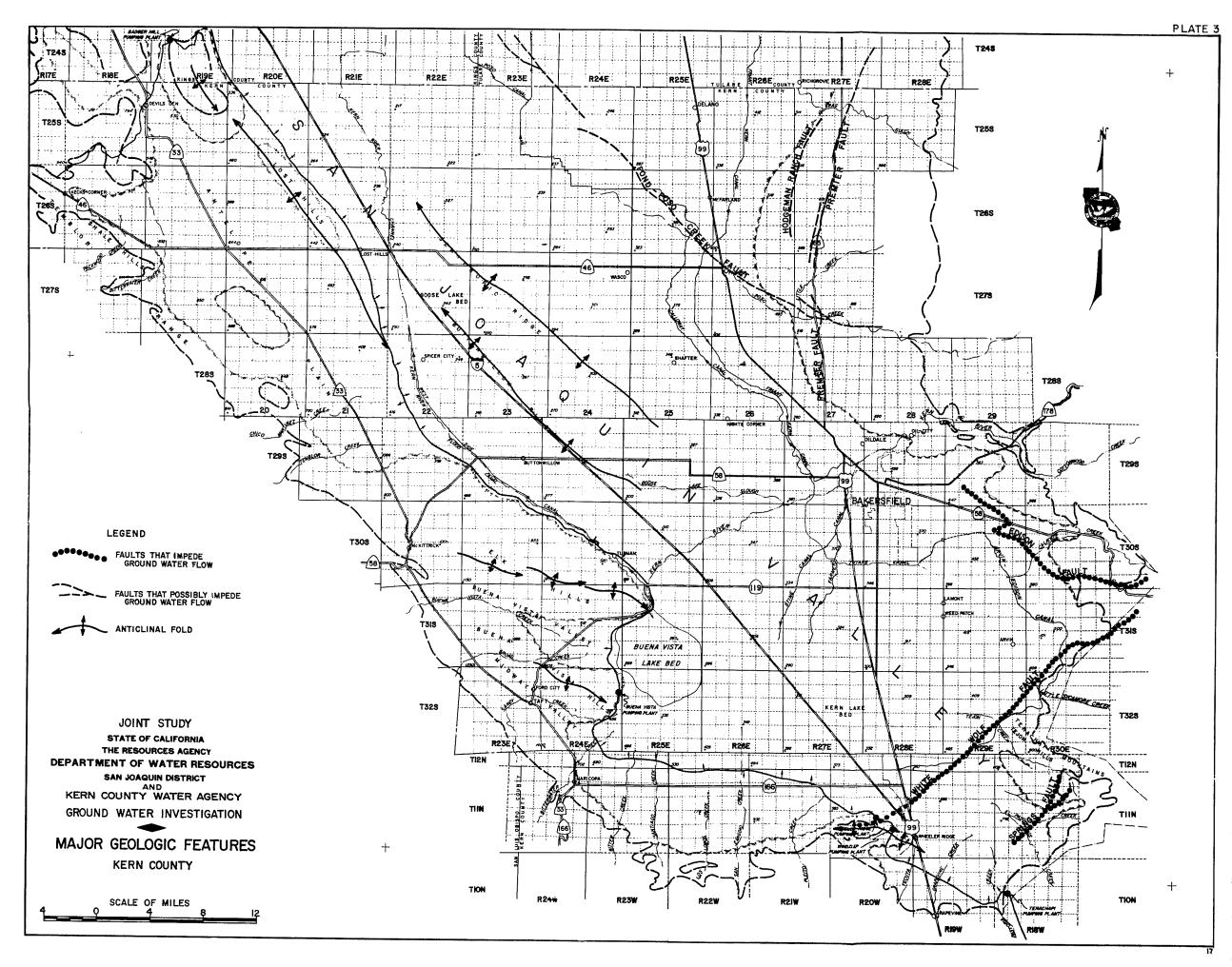
	Pa	th	:								:	Perme-	:	Conduc-
Bet	tw	een	:		F.	low Path	D	imensions	3		:	ability	:	tivity
Node	:	Node	-: -	Top	:	Bottom	:	Width	:	Length	-:	$(af/ft^2-$:	(af-ft/
No.	:	No.	:	(feet)	:	(feet)	:	(feet)	:	(feet)	:	yr)	:	ft ² -yr)
14		313		120.0		-800.0		15,800		15,900		0.109		100.0
17		318		120.0		-800.0		16,300		16,300		0.272		250.0
41		340		120.0		-850.0		15,900		16,200		0.105		100.0
45		340		140.0	•	-1,050.0		16,100		15,900		0.083		100.0
45		346		120.0		-1,300.0		16,200		16,500		0.215		300.0
64		363		130.0		-1,200.0		16,100		16,500		0.462		600.0
69		370		50.0		-1,500.0		16,100		16,400		0.394		600.0
69		387		80.0		-1,600.0		16,300		16,000		0.370		633.1
88		387		90.0		-1,700.0		16,100		16,200		0.343		609.6
88		393		100.0		-2,200.0		16,400		16,400		0.307		706.2
92		393		140.0		-2,500.0		16,600		16,100		0.147		400.0
92		412		180.0		-2,600.0		16,000		16,400		0.002		5.0
113		412		180.0	•	-2,500.0		16,100		16,000		0.037		100.0
113		422		180.0		-2,600.0		16,500		16,200		0.035		100.0
121		422		170.0	-	-2,000.0		16,500		16,400		0.595	:	1,300.0
121		441		190.0		-1,700.0		16,200		16,300		0.266		500.0
142		44 <u>1</u>		200.0	-	-1,150.0		16,300		15,900		0.506		700.0
142		450		140.0		-900.0		12,300		16,300		0.255		200.0
143		450		100.0		-900.0		4,700		18,100		0.083		20.0
148		467		140.0		-1,200.0		16,500		17,200		0.389		500.0
148		469		60.0		-650.0		14,600		15,500		0.523		350.0
149		450		70.0	-	-1,300.0		14,000		18,400		0.096		100.0
149		467		130.0	-	-1,300.0		16,800		14,600		0.304		500.0
168		469		80.0	•	-1,000.0		18,500		17,200		0.129		150.0
168		489		-110.0		-1,005.5		10,900		16,100		0.247		150.0
191		488,	/	246.0		-754.0		15,800		21,100		0.000		0.0
191		489±/				•						_		
192		493		-80.0		-1,000.0		16,400		16,700		0.006		5.1
210		493		-50.0		-1,000.0		1,900		24,900		0.006		0.4
210		509		70.0		-1,800.0		16,500		17,400		0.003		6.0
214		508		230.0	•	-1,100.0		17,100		17,900		0.002		3.0
214		50 9		150.0		-1,500.0		2,700		23,800		0.006		1.0

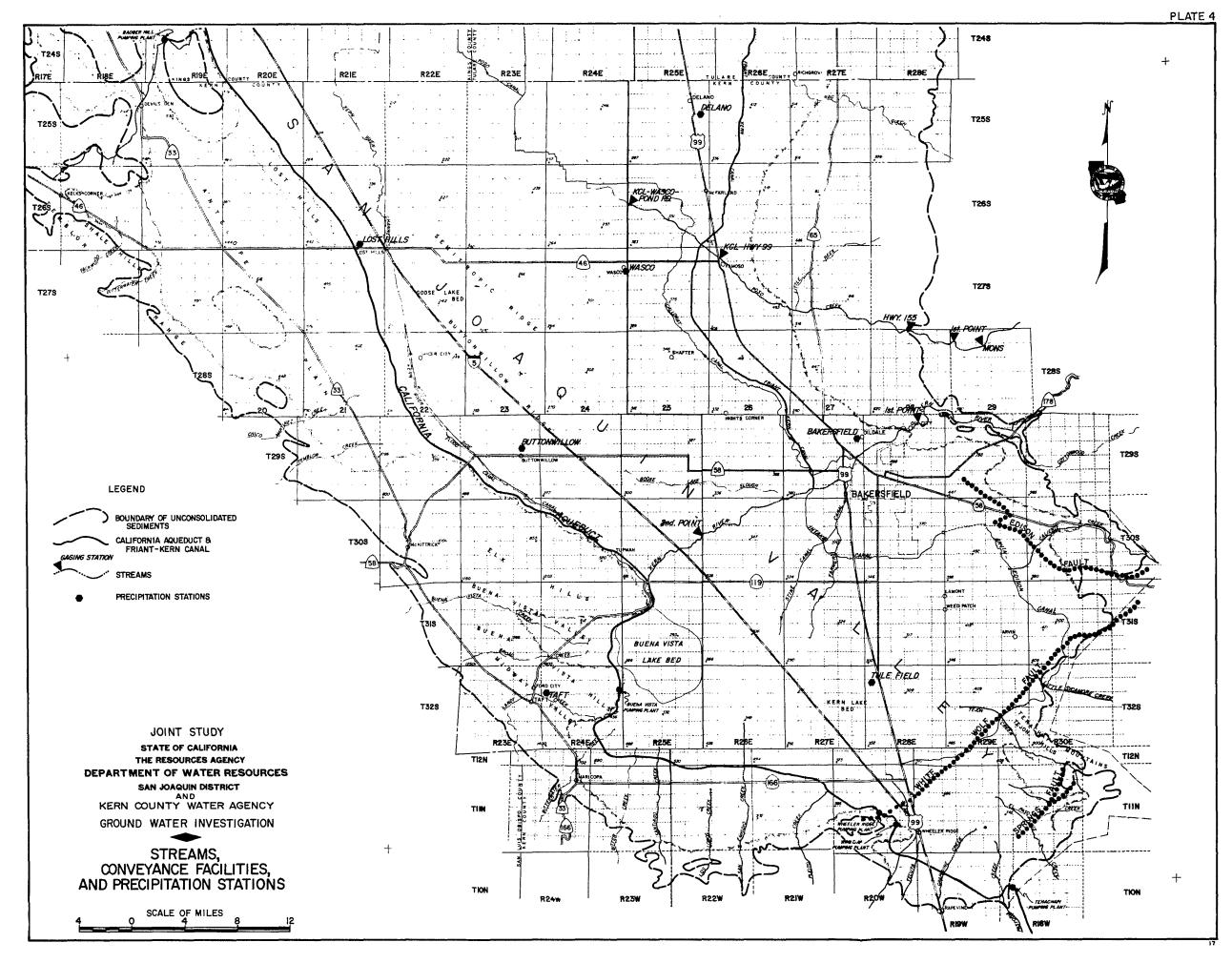
 $[\]underline{1}$ / Link between nodes 191 and 489 not activated.

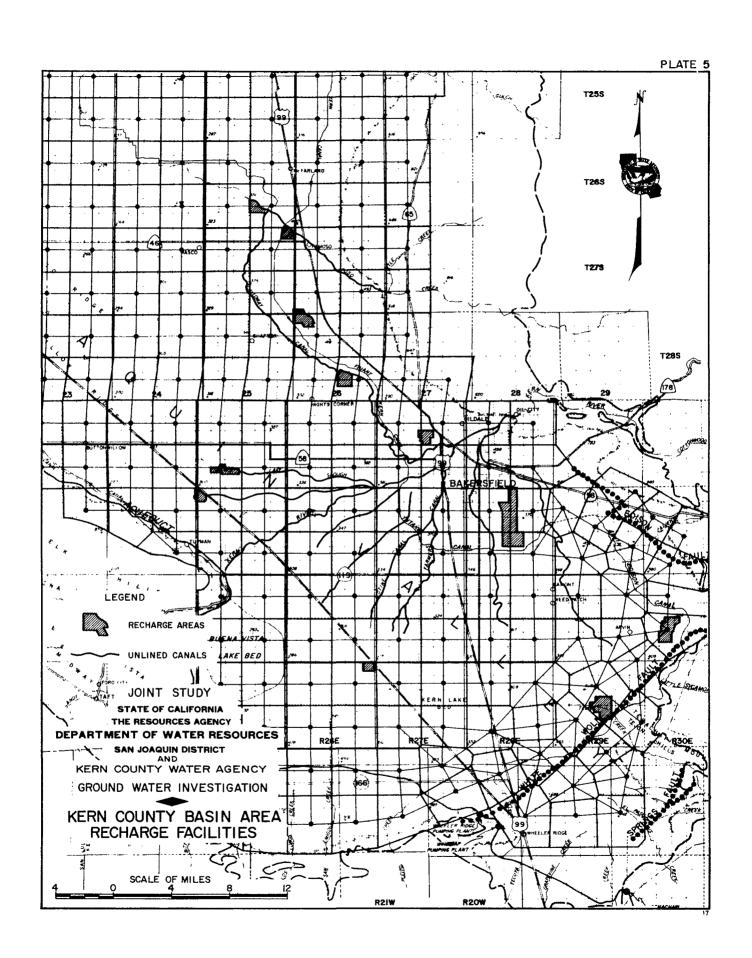
TABLE 39

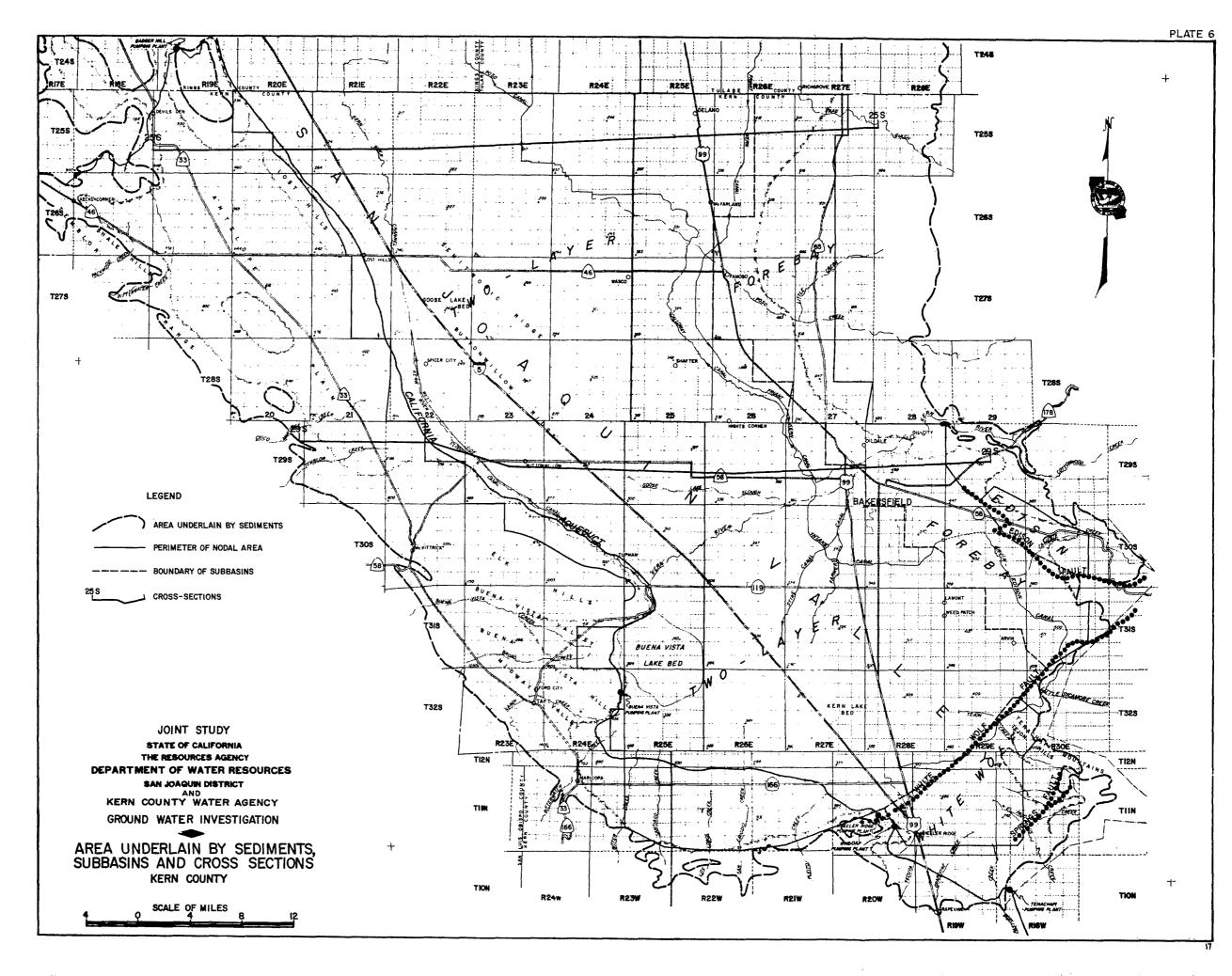

SPECIFIC YIELD VALUES USED
IN MODEL STUDY1

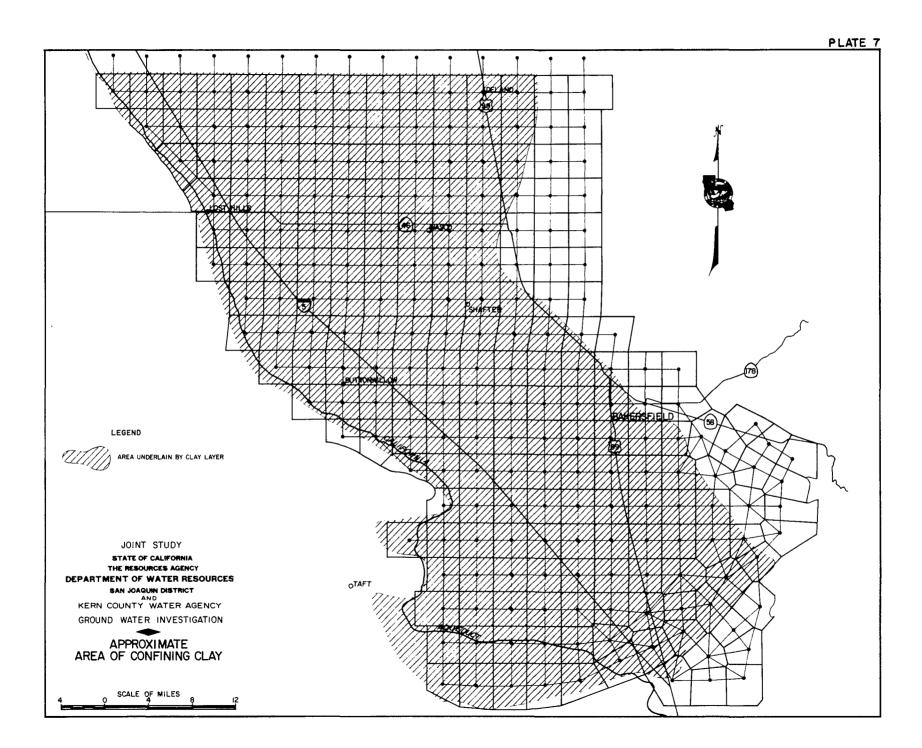

3 percent	: 5 percent	: 10 percent	: 14 percent	: 16 percent	:21-23 percent	:26 percent
Adobe Boulders in clay Cemented clay Clayey loam Decomposed shale Granite and clay Hard clay Hardpan Hard sandy shale Hard shell Muck Shale Shaley clay Shell rock Silty clay loam Soapstone	Chalk rock Clay and gravel Clayey sand Clayey silt Conglomerate Decomposed granite Gravelly clay Loam Rotten conglomerate Rotten granite Sand and clay Sand and silt Sand rock Sandstone Sandy clay Sandy silt Sediment Shaley gravel Silt Silty clay Silty loam Silty sand Soil	Caliche Cemented boulders Cemented gravel Cemented sand Cemented sand and gravel Dead gravel Dead sand Dirty pack sand Hard gravel Hard sand Heavy rocks Soft sandstone Tight boulders Tight coarse gravel	Coarse gravel Cobbles and gravel Boulders Broken rocks Gravel and boulders Heaving gravel Heavy gravel Large gravel Muddy sand Rocks Sand and gravel, silty Silty sand Tight fine gravel Tight medium gravel	Fine sand Heaving sand Quicksand Sand and boulders Sand, gravel, and boulders Tight sand	Dry gravel Gravelly sand Loose gravel Medium gravel Sand Water gravel	Coarse sand Fine grave Medium sand

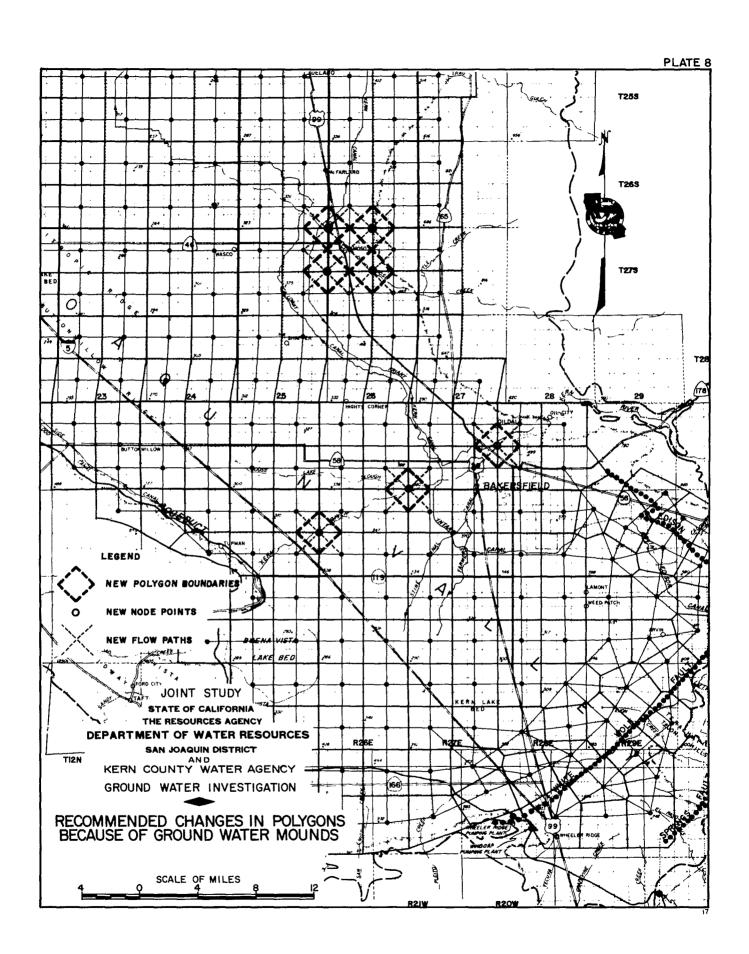

^{1/} Value of one added to given value where streaks of sand or gravel occur in clay or clayey material.

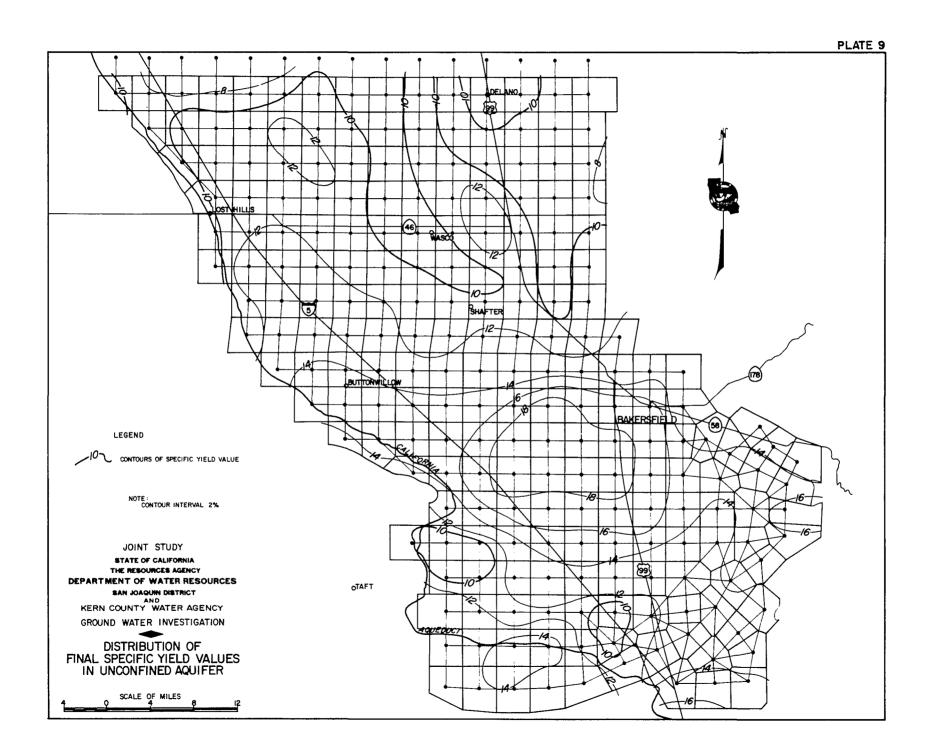

Value of one subtracted from given value where streaks of clay occur in sand or gravel material.

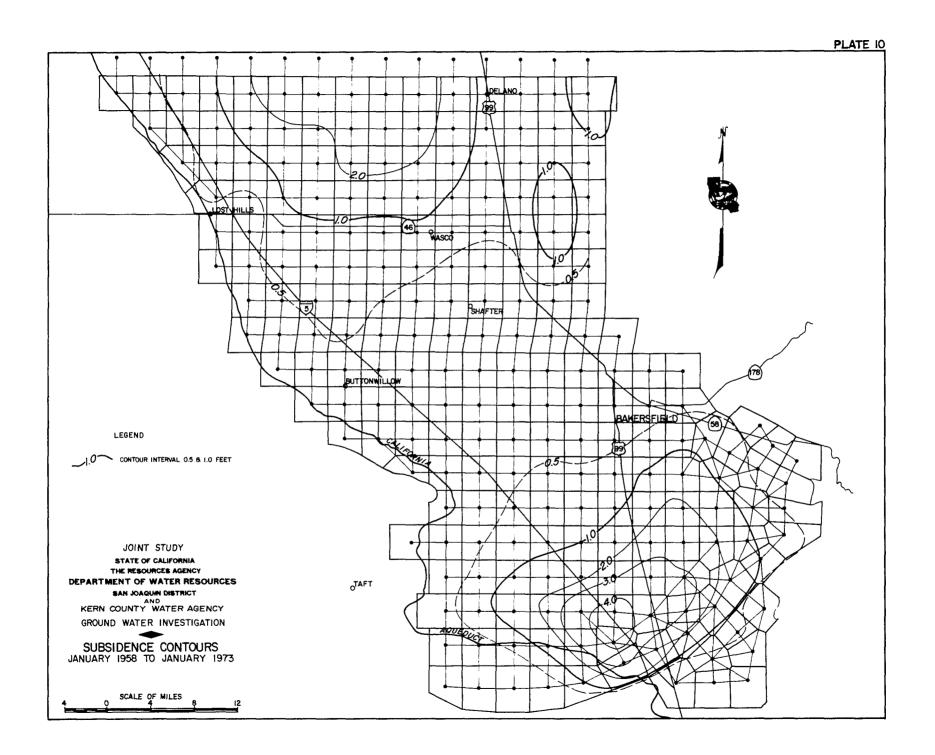

From Table A, Attachment 2, Department of Water Resources Bulletin No. 104, "Planned Utilization of the Ground Water Basins of the Coastal Plain of Los Angeles County", Appendix A, "Ground Water Geology", June 1961.

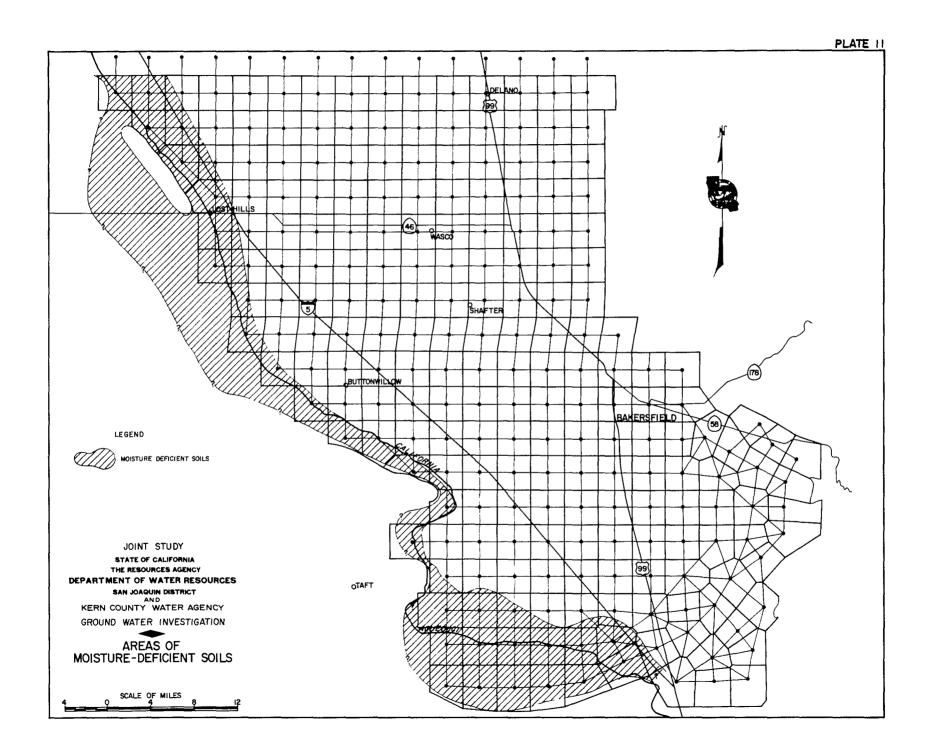












4

11.0